6,155 research outputs found

    More data speeds up training time in learning halfspaces over sparse vectors

    Full text link
    The increased availability of data in recent years has led several authors to ask whether it is possible to use data as a {\em computational} resource. That is, if more data is available, beyond the sample complexity limit, is it possible to use the extra examples to speed up the computation time required to perform the learning task? We give the first positive answer to this question for a {\em natural supervised learning problem} --- we consider agnostic PAC learning of halfspaces over 33-sparse vectors in {−1,1,0}n\{-1,1,0\}^n. This class is inefficiently learnable using O(n/ϵ2)O\left(n/\epsilon^2\right) examples. Our main contribution is a novel, non-cryptographic, methodology for establishing computational-statistical gaps, which allows us to show that, under a widely believed assumption that refuting random 3CNF\mathrm{3CNF} formulas is hard, it is impossible to efficiently learn this class using only O(n/ϵ2)O\left(n/\epsilon^2\right) examples. We further show that under stronger hardness assumptions, even O(n1.499/ϵ2)O\left(n^{1.499}/\epsilon^2\right) examples do not suffice. On the other hand, we show a new algorithm that learns this class efficiently using Ω~(n2/ϵ2)\tilde{\Omega}\left(n^2/\epsilon^2\right) examples. This formally establishes the tradeoff between sample and computational complexity for a natural supervised learning problem.Comment: 13 page

    Relative Importance Sampling For Off-Policy Actor-Critic in Deep Reinforcement Learning

    Full text link
    Off-policy learning is more unstable compared to on-policy learning in reinforcement learning (RL). One reason for the instability of off-policy learning is a discrepancy between the target (π\pi) and behavior (b) policy distributions. The discrepancy between π\pi and b distributions can be alleviated by employing a smooth variant of the importance sampling (IS), such as the relative importance sampling (RIS). RIS has parameter β∈[0,1]\beta\in[0, 1] which controls smoothness. To cope with instability, we present the first relative importance sampling-off-policy actor-critic (RIS-Off-PAC) model-free algorithms in RL. In our method, the network yields a target policy (the actor), a value function (the critic) assessing the current policy (π\pi) using samples drawn from behavior policy. We use action value generated from the behavior policy in reward function to train our algorithm rather than from the target policy. We also use deep neural networks to train both actor and critic. We evaluated our algorithm on a number of Open AI Gym benchmark problems and demonstrate better or comparable performance to several state-of-the-art RL baselines

    Moment-Matching Polynomials

    Full text link
    We give a new framework for proving the existence of low-degree, polynomial approximators for Boolean functions with respect to broad classes of non-product distributions. Our proofs use techniques related to the classical moment problem and deviate significantly from known Fourier-based methods, which require the underlying distribution to have some product structure. Our main application is the first polynomial-time algorithm for agnostically learning any function of a constant number of halfspaces with respect to any log-concave distribution (for any constant accuracy parameter). This result was not known even for the case of learning the intersection of two halfspaces without noise. Additionally, we show that in the "smoothed-analysis" setting, the above results hold with respect to distributions that have sub-exponential tails, a property satisfied by many natural and well-studied distributions in machine learning. Given that our algorithms can be implemented using Support Vector Machines (SVMs) with a polynomial kernel, these results give a rigorous theoretical explanation as to why many kernel methods work so well in practice

    A Survey of Quantum Learning Theory

    Get PDF
    This paper surveys quantum learning theory: the theoretical aspects of machine learning using quantum computers. We describe the main results known for three models of learning: exact learning from membership queries, and Probably Approximately Correct (PAC) and agnostic learning from classical or quantum examples.Comment: 26 pages LaTeX. v2: many small changes to improve the presentation. This version will appear as Complexity Theory Column in SIGACT News in June 2017. v3: fixed a small ambiguity in the definition of gamma(C) and updated a referenc
    • …
    corecore