130,793 research outputs found

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Smooth Parametrizations in Dynamics, Analysis, Diophantine and Computational Geometry

    Full text link
    Smooth parametrization consists in a subdivision of the mathematical objects under consideration into simple pieces, and then parametric representation of each piece, while keeping control of high order derivatives. The main goal of the present paper is to provide a short overview of some results and open problems on smooth parametrization and its applications in several apparently rather separated domains: Smooth Dynamics, Diophantine Geometry, Approximation Theory, and Computational Geometry. The structure of the results, open problems, and conjectures in each of these domains shows in many cases a remarkable similarity, which we try to stress. Sometimes this similarity can be easily explained, sometimes the reasons remain somewhat obscure, and it motivates some natural questions discussed in the paper. We present also some new results, stressing interconnection between various types and various applications of smooth parametrization

    Fun with Fonts: Algorithmic Typography

    Get PDF
    Over the past decade, we have designed six typefaces based on mathematical theorems and open problems, specifically computational geometry. These typefaces expose the general public in a unique way to intriguing results and hard problems in hinged dissections, geometric tours, origami design, computer-aided glass design, physical simulation, and protein folding. In particular, most of these typefaces include puzzle fonts, where reading the intended message requires solving a series of puzzles which illustrate the challenge of the underlying algorithmic problem.Comment: 14 pages, 12 figures. Revised paper with new glass cane font. Original version in Proceedings of the 7th International Conference on Fun with Algorithm

    Computational Geometric and Algebraic Topology

    Get PDF
    Computational topology is a young, emerging field of mathematics that seeks out practical algorithmic methods for solving complex and fundamental problems in geometry and topology. It draws on a wide variety of techniques from across pure mathematics (including topology, differential geometry, combinatorics, algebra, and discrete geometry), as well as applied mathematics and theoretical computer science. In turn, solutions to these problems have a wide-ranging impact: already they have enabled significant progress in the core area of geometric topology, introduced new methods in applied mathematics, and yielded new insights into the role that topology has to play in fundamental problems surrounding computational complexity. At least three significant branches have emerged in computational topology: algorithmic 3-manifold and knot theory, persistent homology and surfaces and graph embeddings. These branches have emerged largely independently. However, it is clear that they have much to offer each other. The goal of this workshop was to be the first significant step to bring these three areas together, to share ideas in depth, and to pool our expertise in approaching some of the major open problems in the field
    corecore