133,697 research outputs found

    Reliable image notifications for smart home security with MQTT

    Get PDF

    Evaluating XMPP Communication in IEC 61499-based Distributed Energy Applications

    Full text link
    The IEC 61499 reference model provides an international standard developed specifically for supporting the creation of distributed event-based automation systems. Functionality is abstracted into function blocks which can be coded graphically as well as via a text-based method. As one of the design goals was the ability to support distributed control applications, communication plays a central role in the IEC 61499 specification. In order to enable the deployment of functionality to distributed platforms, these platforms need to exchange data in a variety of protocols. IEC 61499 realizes the support of these protocols via "Service Interface Function Blocks" (SIFBs). In the context of smart grids and energy applications, IEC 61499 could play an important role, as these applications require coordinating several distributed control logics. Yet, the support of grid-related protocols is a pre-condition for a wide-spread utilization of IEC 61499. The eXtensible Messaging and Presence Protocol (XMPP) on the other hand is a well-established protocol for messaging, which has recently been adopted for smart grid communication. Thus, SIFBs for XMPP facilitate distributed control applications, which use XMPP for exchanging all control relevant data, being realized with the help of IEC 61499. This paper introduces the idea of integrating XMPP into SIFBs, demonstrates the prototypical implementation in an open source IEC 61499 platform and provides an evaluation of the feasibility of the result.Comment: 2016 IEEE 21st International Conference on Emerging Technologies and Factory Automation (ETFA

    A unified theory for excited-state, fragmented, and equilibrium-like Bose condensation in pumped photonic many-body systems

    Full text link
    We derive a theory for Bose condensation in nonequilibrium steady states of bosonic quantum gases that are coupled both to a thermal heat bath and to a pumped reservoir (or gain medium), while suffering from loss. Such a scenario describes photonic many-body systems such as exciton-polariton gases. Our analysis is based on a set of kinetic equations for a gas of noninteracting bosons. By identifying a dimensionless scaling parameter controlling the boson density, we derive a sharp criterion for which system states become selected to host a macroscopic occupation. We show that with increasing pump power, the system generically undergoes a sequence of nonequilibrum phase transitions. At each transition a state either becomes or ceases to be Bose selected (i.e. to host a condensate): The state which first acquires a condensate when the pumping exceeds a threshold is the one with the largest ratio of pumping to loss. This intuitive behavior resembles simple lasing. In the limit of strong pumping, the coupling to the heat bath becomes dominant so that eventually the ground state is selected, corresponding to equilibrium(-like) Bose condensation. For intermediate pumping strengths, several states become selected giving rise to fragmented nonequilibrium Bose condensation. We compare these predictions to experimental results obtained for excitons polaritons in a double-pillar structure [Phys. Rev. Lett. 108, 126403 (2012)] and find good agreement. Our theory, moreover, predicts that the reservoir occupation is clamped at a constant value whenever the system hosts an odd number of Bose condensates
    • …
    corecore