35 research outputs found

    Some properties of Ising automata

    Get PDF
    AbstractIn this work, we shall present some arithmetical and topological properties of Ising automata. More precisely, we shall study many different notions, such as faithful and strictly faithful automata, factor and product automata, irreducible and weakly irreducible automata, prime automata, homogeneous automata, minimal automata, invertible automata, etc., and discuss their related properties. We shall also define and study three different topologies over the set of all minimal automata, and discuss the topological closure property of automatic sequences. As application, we shall use the obtained results to give a somewhat detailed analysis of Ising automata

    Wheels within wheels: an examination of the nature of psychological explanation via a theoretically oriented history of some mechanical models

    Get PDF
    The aim of this thesis is to ask, and attempt to answer, some pertinent questions about that type of psychological explanation which proceeds by simulation, or model building. The method chosen is a detailed examination of some models, mostly 18th and 19th century mechanical ones, together with a theoretically motivated discussion of the relations between these models and the development of psychological theories contemporary with them. Two types of model, formal and intimate, are distinguished, both by their aetiology and by the way they are used by working scientists, and several examples of each type are subjected to scrutiny, as are the intentions of their modellers in building or adopting them. Four main foci of interest emerge: the history of experimental psychology (the myth that experimental psychology was born circa 1870 is exploded); the sociology of science (the impact of developing technology on psychological theory, via the proffering of models, is clearly demonstrated); the philosophy of psychology (issues such as the nature of explanation and the problem of representation are dis¬ cussed); and, last but not least, theoretical psychology (the value of work in cognitive simulation, and of some work in Artificial Intelligence, is stressed and, partly, explained)

    On the development of slime mould morphological, intracellular and heterotic computing devices

    Get PDF
    The use of live biological substrates in the fabrication of unconventional computing (UC) devices is steadily transcending the barriers between science fiction and reality, but efforts in this direction are impeded by ethical considerations, the field’s restrictively broad multidisciplinarity and our incomplete knowledge of fundamental biological processes. As such, very few functional prototypes of biological UC devices have been produced to date. This thesis aims to demonstrate the computational polymorphism and polyfunctionality of a chosen biological substrate — slime mould Physarum polycephalum, an arguably ‘simple’ single-celled organism — and how these properties can be harnessed to create laboratory experimental prototypes of functionally-useful biological UC prototypes. Computing devices utilising live slime mould as their key constituent element can be developed into a) heterotic, or hybrid devices, which are based on electrical recognition of slime mould behaviour via machine-organism interfaces, b) whole-organism-scale morphological processors, whose output is the organism’s morphological adaptation to environmental stimuli (input) and c) intracellular processors wherein data are represented by energetic signalling events mediated by the cytoskeleton, a nano-scale protein network. It is demonstrated that each category of device is capable of implementing logic and furthermore, specific applications for each class may be engineered, such as image processing applications for morphological processors and biosensors in the case of heterotic devices. The results presented are supported by a range of computer modelling experiments using cellular automata and multi-agent modelling. We conclude that P. polycephalum is a polymorphic UC substrate insofar as it can process multimodal sensory input and polyfunctional in its demonstrable ability to undertake a variety of computing problems. Furthermore, our results are highly applicable to the study of other living UC substrates and will inform future work in UC, biosensing, and biomedicine

    Topology Reconstruction of Dynamical Networks via Constrained Lyapunov Equations

    Get PDF
    The network structure (or topology) of a dynamical network is often unavailable or uncertain. Hence, we consider the problem of network reconstruction. Network reconstruction aims at inferring the topology of a dynamical network using measurements obtained from the network. In this technical note we define the notion of solvability of the network reconstruction problem. Subsequently, we provide necessary and sufficient conditions under which the network reconstruction problem is solvable. Finally, using constrained Lyapunov equations, we establish novel network reconstruction algorithms, applicable to general dynamical networks. We also provide specialized algorithms for specific network dynamics, such as the well-known consensus and adjacency dynamics.Comment: 8 page

    Advances in Fundamental Physics

    Get PDF
    This Special Issue celebrates the opening of a new section of the journal Foundation: Physical Sciences. Theoretical and experimental studies related to various areas of fundamental physics are presented in this Special Issue. The published papers are related to the following topics: dark matter, electron impact excitation, second flavor of hydrogen atoms, quantum antenna, molecular hydrogen, molecular hydrogen ion, wave pulses, Brans-Dicke theory, hydrogen Rydberg atom, high-frequency laser field, relativistic mean field formalism, nonlocal continuum field theories, parallel universe, charge exchange, van der Waals broadening, greenhouse effect, strange and unipolar electromagnetic pulses, quasicrystals, Wilhelm-Weber’s electromagnetic force law, axions, photoluminescence, neutron stars, gravitational waves, diatomic molecular spectroscopy, information geometric measures of complexity. Among 21 papers published in this Special Issue, there are 5 reviews and 16 original research papers

    Laboratory directed research and development. FY 1995 progress report

    Full text link

    Noise and morphogenesis: Uncertainty, randomness and control

    Get PDF
    This thesis presents a processual ontology of noise by virtue of which morphogenesis (in its most general understanding as the processes by which order/form is created) must be instantiated. Noise is here outlined as the far from equilibrium environment out of which metastable temporary ‘solutions’ can emerge as the system transitions through the pre-individual state space. While frequently addressed by humanities and arts studies on the basis of its supposed disruptive character (often in terms of aesthetics), this thesis aims to thoroughly examine noise’s conceptual potencies. To explore and amplify the epistemic consequences not merely of the ineliminability of noise but of its originative power as well as within the course of the elimination of givenness by epistemology. This philosophical work is informed by many different fields of contemporary science (namely: statistical physics, information theory, probability theory, 4E cognition, synthetic biology, nonlinear dynamics, complexity science and computer science) in order to assess and highlight the problems of the metascientific and ideological foundations of diverse projects of prediction and control of uncertainty. From algorithmic surveillance back to cybernetics and how these rendered noise “informationally heretical”. This conveys an analysis of how contemporary prediction technologies are dramatically transforming our relationship with the future and with uncertainty in a great number of our social structures. It is a philosophico-critical anthropology of data ontology and a critique of reductive pan-info-computationalism. Additionally, two practical examples of noise characterised as an enabling constraint for the functioning of complex adaptive systems are presented. These are at once biophysical and cognitive, : 1) interaction-dominance constituted by ‘pink noise’ and 2) noise as a source of variability that cells may exploit in (synthetic) biology. Finally, noise is posited as an intractable active ontological randomness that limits the scope of determinism and that goes beyond unpredictability in any epistemological sense due to the insuperability of the situation in which epistemology finds itself following the critique of the given
    corecore