5,736 research outputs found

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions

    Semantic Integration of Cervical Cancer Data Repositories to Facilitate Multicenter Association Studies: The ASSIST Approach

    Get PDF
    The current work addresses the unifi cation of Electronic Health Records related to cervical cancer into a single medical knowledge source, in the context of the EU-funded ASSIST research project. The project aims to facilitate the research for cervical precancer and cancer through a system that virtually unifi es multiple patient record repositories, physically located in different medical centers/hospitals, thus, increasing fl exibility by allowing the formation of study groups “on demand” and by recycling patient records in new studies. To this end, ASSIST uses semantic technologies to translate all medical entities (such as patient examination results, history, habits, genetic profi le) and represent them in a common form, encoded in the ASSIST Cervical Cancer Ontology. The current paper presents the knowledge elicitation approach followed, towards the defi nition and representation of the disease’s medical concepts and rules that constitute the basis for the ASSIST Cervical Cancer Ontology. The proposed approach constitutes a paradigm for semantic integration of heterogeneous clinical data that may be applicable to other biomedical application domains

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Enhancing Privacy and Authorization Control Scalability in the Grid through Ontologies

    Full text link
    © 2009 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.The use of data Grids for sharing relevant data has proven to be successful in many research disciplines. However, the use of these environments when personal data are involved (such as in health) is reduced due to its lack of trust. There are many approaches that provide encrypted storages and key shares to prevent the access from unauthorized users. However, these approaches are additional layers that should be managed along with the authorization policies. We present in this paper a privacy-enhancing technique that uses encryption and relates to the structure of the data and their organizations, providing a natural way to propagate authorization and also a framework that fits with many use cases. The paper describes the architecture and processes, and also shows results obtained in a medical imaging platform.Manuscript received November 19, 2007; revised July 27, 2008. First published August 4,2008; cur-rent version published January 4,2009. This work was supported in part by the Spanish Ministry of Education and Science to develop the project "ngGrid-New Generation Components for the Efficient Exploitation of eScience Infrastructures," under Grant TIN2006-12860 and in part by the Structural Funds of the European Regional Development Fund (ERDF).Blanquer Espert, I.; Hernández García, V.; Segrelles Quilis, JD.; Torres Serrano, E. (2009). Enhancing Privacy and Authorization Control Scalability in the Grid through Ontologies. IEEE Transactions on Information Technology in Biomedicine. 13(1):16-24. https://doi.org/10.1109/TITB.2008.2003369S162413

    A FRAMEWORK FOR BIOPROFILE ANALYSIS OVER GRID

    Get PDF
    An important trend in modern medicine is towards individualisation of healthcare to tailor care to the needs of the individual. This makes it possible, for example, to personalise diagnosis and treatment to improve outcome. However, the benefits of this can only be fully realised if healthcare and ICT resources are exploited (e.g. to provide access to relevant data, analysis algorithms, knowledge and expertise). Potentially, grid can play an important role in this by allowing sharing of resources and expertise to improve the quality of care. The integration of grid and the new concept of bioprofile represents a new topic in the healthgrid for individualisation of healthcare. A bioprofile represents a personal dynamic "fingerprint" that fuses together a person's current and past bio-history, biopatterns and prognosis. It combines not just data, but also analysis and predictions of future or likely susceptibility to disease, such as brain diseases and cancer. The creation and use of bioprofile require the support of a number of healthcare and ICT technologies and techniques, such as medical imaging and electrophysiology and related facilities, analysis tools, data storage and computation clusters. The need to share clinical data, storage and computation resources between different bioprofile centres creates not only local problems, but also global problems. Existing ICT technologies are inappropriate for bioprofiling because of the difficulties in the use and management of heterogeneous IT resources at different bioprofile centres. Grid as an emerging resource sharing concept fulfils the needs of bioprofile in several aspects, including discovery, access, monitoring and allocation of distributed bioprofile databases, computation resoiuces, bioprofile knowledge bases, etc. However, the challenge of how to integrate the grid and bioprofile technologies together in order to offer an advanced distributed bioprofile environment to support individualized healthcare remains. The aim of this project is to develop a framework for one of the key meta-level bioprofile applications: bioprofile analysis over grid to support individualised healthcare. Bioprofile analysis is a critical part of bioprofiling (i.e. the creation, use and update of bioprofiles). Analysis makes it possible, for example, to extract markers from data for diagnosis and to assess individual's health status. The framework provides a basis for a "grid-based" solution to the challenge of "distributed bioprofile analysis" in bioprofiling. The main contributions of the thesis are fourfold: A. An architecture for bioprofile analysis over grid. The design of a suitable aichitecture is fundamental to the development of any ICT systems. The architecture creates a meaiis for categorisation, determination and organisation of core grid components to support the development and use of grid for bioprofile analysis; B. A service model for bioprofile analysis over grid. The service model proposes a service design principle, a service architecture for bioprofile analysis over grid, and a distributed EEG analysis service model. The service design principle addresses the main service design considerations behind the service model, in the aspects of usability, flexibility, extensibility, reusability, etc. The service architecture identifies the main categories of services and outlines an approach in organising services to realise certain functionalities required by distributed bioprofile analysis applications. The EEG analysis service model demonstrates the utilisation and development of services to enable bioprofile analysis over grid; C. Two grid test-beds and a practical implementation of EEG analysis over grid. The two grid test-beds: the BIOPATTERN grid and PlymGRID are built based on existing grid middleware tools. They provide essential experimental platforms for research in bioprofiling over grid. The work here demonstrates how resources, grid middleware and services can be utilised, organised and implemented to support distributed EEG analysis for early detection of dementia. The distributed Electroencephalography (EEG) analysis environment can be used to support a variety of research activities in EEG analysis; D. A scheme for organising multiple (heterogeneous) descriptions of individual grid entities for knowledge representation of grid. The scheme solves the compatibility and adaptability problems in managing heterogeneous descriptions (i.e. descriptions using different languages and schemas/ontologies) for collaborated representation of a grid environment in different scales. It underpins the concept of bioprofile analysis over grid in the aspect of knowledge-based global coordination between components of bioprofile analysis over grid

    Content-Based Organisation of Virtual Repositories of DICOM Objects

    Full text link
    The integration of multi-centre medical image data to create knowledge repositories for research and training activities has been an aim targeted since long ago. This paper presents an environment to share, to process and to organise medical imaging data according to a structured framework in which the image reports play a key role. This environment has been validated on a clinical environment, facing problems such as firewalls and security restrictions, in the frame of the CVIMO (Valencian Cyberinfrastructure of Medical Imaging in Oncology) project. The environment uses a middleware called TRENCADIS (Towards a Grid Environment for Processing and Sharing DICOM Objects) that provides users with the management of multiple administrative domains, data encryption and decryption on the fly and semantic indexation of images. Data is structured into four levels: Global data available, virtual federated storages of studies shared across a vertical domain, subsets for projects or experiments on the virtual storage and individual searches on these subsets. This structure of levels gives the needed flexibility for organising authorisation, and hides data that are not relevant for a given experiment. The main components and interactions are shown in the document, outlining the workflows and explaining the different approaches considered, including the protocols used and the difficulties met. © 2009 Elsevier B.V. All rights reserved.The authors wish to thanks the financial support received from Valencia Region Ministry of Enterprises, University (Conselleria de Empresa, Universidad y Ciencia) to develop the project "Ciberinfraestructura Valenciana de Imagen medica Oncologica", with reference GVEMP06/04.Blanquer Espert, I.; Hernández García, V.; Meseguer Anastasio, JE.; Segrelles Quilis, JD. (2009). Content-Based Organisation of Virtual Repositories of DICOM Objects. Future Generation Computer Systems. 25(6):627-637. https://doi.org/10.1016/j.future.2008.12.004S62763725

    Interoperability and FAIRness through a novel combination of Web technologies

    Get PDF
    Data in the life sciences are extremely diverse and are stored in a broad spectrum of repositories ranging from those designed for particular data types (such as KEGG for pathway data or UniProt for protein data) to those that are general-purpose (such as FigShare, Zenodo, Dataverse or EUDAT). These data have widely different levels of sensitivity and security considerations. For example, clinical observations about genetic mutations in patients are highly sensitive, while observations of species diversity are generally not. The lack of uniformity in data models from one repository to another, and in the richness and availability of metadata descriptions, makes integration and analysis of these data a manual, time-consuming task with no scalability. Here we explore a set of resource-oriented Web design patterns for data discovery, accessibility, transformation, and integration that can be implemented by any general- or special-purpose repository as a means to assist users in finding and reusing their data holdings. We show that by using off-the-shelf technologies, interoperability can be achieved atthe level of an individual spreadsheet cell. We note that the behaviours of this architecture compare favourably to the desiderata defined by the FAIR Data Principles, and can therefore represent an exemplar implementation of those principles. The proposed interoperability design patterns may be used to improve discovery and integration of both new and legacy data, maximizing the utility of all scholarly outputs

    The Healthgrid White Paper

    Get PDF
    corecore