618 research outputs found

    Cyber Threat Intelligence Model: An Evaluation of Taxonomies, Sharing Standards, and Ontologies within Cyber Threat Intelligence

    Full text link
    Cyber threat intelligence is the provision of evidence-based knowledge about existing or emerging threats. Benefits of threat intelligence include increased situational awareness and efficiency in security operations and improved prevention, detection, and response capabilities. To process, analyze, and correlate vast amounts of threat information and derive highly contextual intelligence that can be shared and consumed in meaningful times requires utilizing machine-understandable knowledge representation formats that embed the industry-required expressivity and are unambiguous. To a large extend, this is achieved by technologies like ontologies, interoperability schemas, and taxonomies. This research evaluates existing cyber-threat-intelligence-relevant ontologies, sharing standards, and taxonomies for the purpose of measuring their high-level conceptual expressivity with regards to the who, what, why, where, when, and how elements of an adversarial attack in addition to courses of action and technical indicators. The results confirmed that little emphasis has been given to developing a comprehensive cyber threat intelligence ontology with existing efforts not being thoroughly designed, non-interoperable and ambiguous, and lacking semantic reasoning capability

    Um método supervisionado para encontrar variáveis discriminantes na análise de problemas complexos : estudos de caso em segurança do Android e em atribuição de impressora fonte

    Get PDF
    Orientadores: Ricardo Dahab, Anderson de Rezende RochaDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de ComputaçãoResumo: A solução de problemas onde muitos componentes atuam e interagem simultaneamente requer modelos de representação nem sempre tratáveis pelos métodos analíticos tradicionais. Embora em muitos caso se possa prever o resultado com excelente precisão através de algoritmos de aprendizagem de máquina, a interpretação do fenómeno requer o entendimento de quais são e em que proporção atuam as variáveis mais importantes do processo. Esta dissertação apresenta a aplicação de um método onde as variáveis discriminantes são identificadas através de um processo iterativo de ranqueamento ("ranking") por eliminação das que menos contribuem para o resultado, avaliando-se em cada etapa o impacto da redução de características nas métricas de acerto. O algoritmo de florestas de decisão ("Random Forest") é utilizado para a classificação e sua propriedade de importância das características ("Feature Importance") para o ranqueamento. Para a validação do método, dois trabalhos abordando sistemas complexos de natureza diferente foram realizados dando origem aos artigos aqui apresentados. O primeiro versa sobre a análise das relações entre programas maliciosos ("malware") e os recursos requisitados pelos mesmos dentro de um ecossistema de aplicações no sistema operacional Android. Para realizar esse estudo, foram capturados dados, estruturados segundo uma ontologia definida no próprio artigo (OntoPermEco), de 4.570 aplicações (2.150 malware, 2.420 benignas). O modelo complexo produziu um grafo com cerca de 55.000 nós e 120.000 arestas, o qual foi transformado usando-se a técnica de bolsa de grafos ("Bag Of Graphs") em vetores de características de cada aplicação com 8.950 elementos. Utilizando-se apenas os dados do manifesto atingiu-se com esse modelo 88% de acurácia e 91% de precisão na previsão do comportamento malicioso ou não de uma aplicação, e o método proposto foi capaz de identificar 24 características relevantes na classificação e identificação de famílias de malwares, correspondendo a 70 nós no grafo do ecosistema. O segundo artigo versa sobre a identificação de regiões em um documento impresso que contém informações relevantes na atribuição da impressora laser que o imprimiu. O método de identificação de variáveis discriminantes foi aplicado sobre vetores obtidos a partir do uso do descritor de texturas (CTGF-"Convolutional Texture Gradient Filter") sobre a imagem scaneada em 600 DPI de 1.200 documentos impressos em 10 impressoras. A acurácia e precisão médias obtidas no processo de atribuição foram de 95,6% e 93,9% respectivamente. Após a atribuição da impressora origem a cada documento, 8 das 10 impressoras permitiram a identificação de variáveis discriminantes associadas univocamente a cada uma delas, podendo-se então visualizar na imagem do documento as regiões de interesse para uma análise pericial. Os objetivos propostos foram atingidos mostrando-se a eficácia do método proposto na análise de dois problemas em áreas diferentes (segurança de aplicações e forense digital) com modelos complexos e estruturas de representação bastante diferentes, obtendo-se um modelo reduzido interpretável para ambas as situaçõesAbstract: Solving a problem where many components interact and affect results simultaneously requires models which sometimes are not treatable by traditional analytic methods. Although in many cases the result is predicted with excellent accuracy through machine learning algorithms, the interpretation of the phenomenon requires the understanding of how the most relevant variables contribute to the results. This dissertation presents an applied method where the discriminant variables are identified through an iterative ranking process. In each iteration, a classifier is trained and validated discarding variables that least contribute to the result and evaluating in each stage the impact of this reduction in the classification metrics. Classification uses the Random Forest algorithm, and the discarding decision applies using its feature importance property. The method handled two works approaching complex systems of different nature giving rise to the articles presented here. The first article deals with the analysis of the relations between \textit{malware} and the operating system resources requested by them within an ecosystem of Android applications. Data structured according to an ontology defined in the article (OntoPermEco) were captured to carry out this study from 4,570 applications (2,150 malware, 2,420 benign). The complex model produced a graph of about 55,000 nodes and 120,000 edges, which was transformed using the Bag of Graphs technique into feature vectors of each application with 8,950 elements. The work accomplished 88% of accuracy and 91% of precision in predicting malicious behavior (or not) for an application using only the data available in the application¿s manifest, and the proposed method was able to identify 24 relevant features corresponding to only 70 nodes of the entire ecosystem graph. The second article is about to identify regions in a printed document that contains information relevant to the attribution of the laser printer that printed it. The discriminant variable determination method achieved average accuracy and precision of 95.6% and 93.9% respectively in the source printer attribution using a dataset of 1,200 documents printed on ten printers. Feature vectors were obtained from the scanned image at 600 DPI applying the texture descriptor Convolutional Texture Gradient Filter (CTGF). After the assignment of the source printer to each document, eight of the ten printers allowed the identification of discriminant variables univocally associated to each one of them, and it was possible to visualize in document's image the regions of interest for expert analysis. The work in both articles accomplished the objective of reducing a complex system into an interpretable streamlined model demonstrating the effectiveness of the proposed method in the analysis of two problems in different areas (application security and digital forensics) with complex models and entirely different representation structuresMestradoCiência da ComputaçãoMestre em Ciência da Computaçã

    Advanced Threat Intelligence: Interpretation of Anomalous Behavior in Ubiquitous Kernel Processes

    Get PDF
    Targeted attacks on digital infrastructures are a rising threat against the confidentiality, integrity, and availability of both IT systems and sensitive data. With the emergence of advanced persistent threats (APTs), identifying and understanding such attacks has become an increasingly difficult task. Current signature-based systems are heavily reliant on fixed patterns that struggle with unknown or evasive applications, while behavior-based solutions usually leave most of the interpretative work to a human analyst. This thesis presents a multi-stage system able to detect and classify anomalous behavior within a user session by observing and analyzing ubiquitous kernel processes. Application candidates suitable for monitoring are initially selected through an adapted sentiment mining process using a score based on the log likelihood ratio (LLR). For transparent anomaly detection within a corpus of associated events, the author utilizes star structures, a bipartite representation designed to approximate the edit distance between graphs. Templates describing nominal behavior are generated automatically and are used for the computation of both an anomaly score and a report containing all deviating events. The extracted anomalies are classified using the Random Forest (RF) and Support Vector Machine (SVM) algorithms. Ultimately, the newly labeled patterns are mapped to a dedicated APT attacker–defender model that considers objectives, actions, actors, as well as assets, thereby bridging the gap between attack indicators and detailed threat semantics. This enables both risk assessment and decision support for mitigating targeted attacks. Results show that the prototype system is capable of identifying 99.8% of all star structure anomalies as benign or malicious. In multi-class scenarios that seek to associate each anomaly with a distinct attack pattern belonging to a particular APT stage we achieve a solid accuracy of 95.7%. Furthermore, we demonstrate that 88.3% of observed attacks could be identified by analyzing and classifying a single ubiquitous Windows process for a mere 10 seconds, thereby eliminating the necessity to monitor each and every (unknown) application running on a system. With its semantic take on threat detection and classification, the proposed system offers a formal as well as technical solution to an information security challenge of great significance.The financial support by the Christian Doppler Research Association, the Austrian Federal Ministry for Digital and Economic Affairs, and the National Foundation for Research, Technology and Development is gratefully acknowledged

    Cyber Security and Critical Infrastructures

    Get PDF
    This book contains the manuscripts that were accepted for publication in the MDPI Special Topic "Cyber Security and Critical Infrastructure" after a rigorous peer-review process. Authors from academia, government and industry contributed their innovative solutions, consistent with the interdisciplinary nature of cybersecurity. The book contains 16 articles: an editorial explaining current challenges, innovative solutions, real-world experiences including critical infrastructure, 15 original papers that present state-of-the-art innovative solutions to attacks on critical systems, and a review of cloud, edge computing, and fog's security and privacy issues

    SPARC 2018 Internationalisation and collaboration : Salford postgraduate annual research conference book of abstracts

    Get PDF
    Welcome to the Book of Abstracts for the 2018 SPARC conference. This year we not only celebrate the work of our PGRs but also the launch of our Doctoral School, which makes this year’s conference extra special. Once again we have received a tremendous contribution from our postgraduate research community; with over 100 presenters, the conference truly showcases a vibrant PGR community at Salford. These abstracts provide a taster of the research strengths of their works, and provide delegates with a reference point for networking and initiating critical debate. With such wide-ranging topics being showcased, we encourage you to take up this great opportunity to engage with researchers working in different subject areas from your own. To meet global challenges, high impact research inevitably requires interdisciplinary collaboration. This is recognised by all major research funders. Therefore engaging with the work of others and forging collaborations across subject areas is an essential skill for the next generation of researchers

    Cyber Threat Intelligence based Holistic Risk Quantification and Management

    Get PDF

    A Comprehensive Analysis of the Role of Artificial Intelligence and Machine Learning in Modern Digital Forensics and Incident Response

    Full text link
    In the dynamic landscape of digital forensics, the integration of Artificial Intelligence (AI) and Machine Learning (ML) stands as a transformative technology, poised to amplify the efficiency and precision of digital forensics investigations. However, the use of ML and AI in digital forensics is still in its nascent stages. As a result, this paper gives a thorough and in-depth analysis that goes beyond a simple survey and review. The goal is to look closely at how AI and ML techniques are used in digital forensics and incident response. This research explores cutting-edge research initiatives that cross domains such as data collection and recovery, the intricate reconstruction of cybercrime timelines, robust big data analysis, pattern recognition, safeguarding the chain of custody, and orchestrating responsive strategies to hacking incidents. This endeavour digs far beneath the surface to unearth the intricate ways AI-driven methodologies are shaping these crucial facets of digital forensics practice. While the promise of AI in digital forensics is evident, the challenges arising from increasing database sizes and evolving criminal tactics necessitate ongoing collaborative research and refinement within the digital forensics profession. This study examines the contributions, limitations, and gaps in the existing research, shedding light on the potential and limitations of AI and ML techniques. By exploring these different research areas, we highlight the critical need for strategic planning, continual research, and development to unlock AI's full potential in digital forensics and incident response. Ultimately, this paper underscores the significance of AI and ML integration in digital forensics, offering insights into their benefits, drawbacks, and broader implications for tackling modern cyber threats
    • …
    corecore