4,683 research outputs found

    Rethinking Digital Forensics

    Get PDF
    © IAER 2019In the modern socially-driven, knowledge-based virtual computing environment in which organisations are operating, the current digital forensics tools and practices can no longer meet the need for scientific rigour. There has been an exponential increase in the complexity of the networks with the rise of the Internet of Things, cloud technologies and fog computing altering business operations and models. Adding to the problem are the increased capacity of storage devices and the increased diversity of devices that are attached to networks, operating autonomously. We argue that the laws and standards that have been written, the processes, procedures and tools that are in common use are increasingly not capable of ensuring the requirement for scientific integrity. This paper looks at a number of issues with current practice and discusses measures that can be taken to improve the potential of achieving scientific rigour for digital forensics in the current and developing landscapePeer reviewe

    A semantic methodology for (un)structured digital evidences analysis

    Get PDF
    Nowadays, more than ever, digital forensics activities are involved in any criminal, civil or military investigation and represent a fundamental tool to support cyber-security. Investigators use a variety of techniques and proprietary software forensic applications to examine the copy of digital devices, searching hidden, deleted, encrypted, or damaged files or folders. Any evidence found is carefully analysed and documented in a "finding report" in preparation for legal proceedings that involve discovery, depositions, or actual litigation. The aim is to discover and analyse patterns of fraudulent activities. In this work, a new methodology is proposed to support investigators during the analysis process, correlating evidences found through different forensic tools. The methodology was implemented through a system able to add semantic assertion to data generated by forensics tools during extraction processes. These assertions enable more effective access to relevant information and enhanced retrieval and reasoning capabilities

    Ontologies and the Semantic Web for Digital Investigation Tool Selection

    Get PDF
    The nascent field of digital forensics is heavily influenced by practice. Much digital forensics research involves the use, evaluation, and categorization of the multitude of tools available to researchers and practitioners. As technology evolves at an increasingly rapid pace, the digital forensics field must constantly adapt by creating and evaluating new tools and techniques to perform forensic analysis on many disparate systems such as desktops, notebook computers, mobile devices, cloud, and personal wearable sensor devices, among many others. While researchers have attempted to use ontologies to classify the digital forensics domain on various dimensions, no ontology of digital forensic tools has been developed that defines the capabilities and relationships among the various digital forensic tools. To address this gap, this work develops an ontology using Resource Description Framework (RDF) and Ontology Web Language (OWL) which is searchable via SP ARQL ( an RDF query language) and catalogues common digital forensic tools. Following the concept of ontology design patterns, our ontology has a modular design to promote integration with existing ontologies. Furthermore, we progress to a semantic web application that employs reasoning in order to aid digital investigators with selecting an appropriate tool. This work serves as an important step towards building the knowledge of digital forensics tools. Additionally, this research sets the preliminary stage to bringing semantic web technology to the digital forensics domain as well as facilitates expanding the developed ontology to other tools and features, relationships, and forensic techniques

    The Development of Digital Forensics Workforce Competency on the Example of Estonian Defence League

    Get PDF
    03.07.2014 kehtestati Vabariigi Valitsuse määrus nr. 108, mis reguleerib Kaitseliidu kaasamise tingimusi ja korda küberjulgeoleku tagamisel. Seega võivad Kaitseliidu küberkaitse üksuse (KL KKÜ edaspidi KKÜ) kutsuda olukorda toetama erinevad asutused: näiteks Riigi Infosüsteemide amet (RIA), infosüsteemi järelevalveasutus või kaitseministeerium või selle valitsemisala ametiasutused oma ülesannete raames. KKÜ-d saab kaasata info- ja sidetehnoloogia infrastruktuuri järjepidevuse tagamisel, turvaintsidentide kontrollimisel ja lahendamisel, rakendades nii aktiivseid kui passiivseid meetmeid. KKÜ ülesannete kaardistamisel täheldati, et KKÜ partnerasutused / organisatsioonid ei ole kaardistanud oma spetsialistide olemasolevaid pädevusi ja sellele lisaks puudub ülevaade digitaalse ekspertiisi kogukonnas vajaolevatest pädevustest. Leitut arvesse võttes seati ülesandeks vajadustest ja piirangutest (võttes arvesse digitaalse ekspertiisi kogukonda kujundavaid standardeid) ülevaatliku pildi loomine, et töötada välja digitaalse ekspertiisi kompetentsipõhine raamistik, mis toetab KKÜ spetsialistide arendamist palkamisest pensionini. Selleks uurisime KKÜ ja nende olemasolevate koolitusprogrammide hetkeolukorda ning otsustasime milliseid omadusi peab edasise arengu tarbeks uurima ja kaaluma. Võrreldavate tulemuste saa-miseks ja eesmärgi täitmiseks pidi koostatav mudel olema suuteline lahendama 5-t järgnevat ülesannet: 1. Oskuste kaardistamine, 2. Eesmärkide seadmine ja ümberhindamine, 3. Koolituskava planeerimine, 4. Värbamisprotsessi kiirendamine ning 5. Spetsialistide kestva arengu soodustamine. Raamistiku väljatöötamiseks võeti aluseks National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework (NICE Framework) pädevusraamistik mida parendati digitaalse ekspertiisi spetsialistide, ja käesoleval juhul ka KKÜ, vajadusi silmas pidades. Täiendusi lisati nii tasemete, spetsialiseerumise kui ka ülesannete kirjelduste kujul. Parenduste lisamisel võeti arvesse töös tutvustatud digitaalse ekspertiisi piiranguid ja standardeid, mille lõpptulemusena esitati KKÜ-le Digitaalse Ekspertiisi Pädevuse ontoloogia, KKÜ struktuuri muudatuse ettepanek, soovitatavad õpetamisstrateegiad digitaalse ekspertiisi kasutamiseks (muudetud Bloomi taksonoomia tasemetega), uus digitaalse ekspertiisi standardi alajaotus – Mehitamata Süsteemide ekspertiis ja Digitaalse Ekspertiisi Pädevuse Mudeli Raamistik. Ülesannete ja oskuste loetelu koostati rahvusvaheliselt tunnustatud sertifitseerimis-organisatsioonide ja erialast pädevust pakkuvate õppekavade abil. Kavandatava mudeli hindamiseks kasutati mini-Delphi ehk Estimate-Talk-Estimate (ETE) tehnikat. Esialgne prognoos vajaduste ja prioriteetidega anti KKÜ partnerasutustele saamaks tehtud töö kohta ekspertarvamusi. Kogu tagasisidet silmas pidades tehti mudelisse korrektuurid ja KKÜ-le sai vormistatud ettepanek ühes edasise tööplaaniga. Üldiselt kirjeldab väljapakutud pädevusraamistik KKÜ spetsialistilt ooda-tavat pädevuse ulatust KKÜ-s, et suurendada nende rolli kiirreageerimisrühmana. Raamistik aitab määratleda digitaalse ekspertiisi eeldatavaid pädevusi ja võimekusi praktikas ning juhendab eksperte spetsialiseerumise valikul. Kavandatud mudeli juures on arvestatud pikaajalise mõjuga (palkamisest pensionini). Tulenevalt mudeli komplekssusest, on raamistikul pikk rakendusfaas – organisatsiooni arengule maksimaalse mõju saavutamiseks on prognoositud ajakava maksimaalselt 5 aastat. Antud ettepanekud on käesolevaks hetkeks KKÜ poolt heaks kiidetud ning planeeritud kava rakendati esmakordselt 2019 aasta aprillikuus.In 03.07.2014 Regulation No. 108 was introduced which regulates the conditions and pro-cedure of the involvement of the Estonian Defence League (EDL) Cyber Defence Unit (CDU) in ensuring cyber security. This means that EDL can be brought in by the Information System Authority, Ministry of Defence or the authorities of its area of government within the scope of either of their tasks e.g. ensuring the continuity of information and communication technology infrastructure and in handling and solving cyber security incidents while applying both active and passive measures. In January 2018 EDL CDU’s Digi-tal Evidence Handling Group had to be re-organized and, thus, presented a proposal for internal curriculum in order to further instruct Digital Evidence specialists. While describing the CDU's tasks, it was noted that the CDU's partner institutions / organizations have not mapped out their specialists’ current competencies. With this in mind, we set out to create a comprehensive list of needs and constraints (taking into account the community standards of DF) to develop a DF-based competence framework that supports the devel-opment of CDU professionals. Hence, we studied the current situation of CDU, their existing training program, and contemplated which features we need to consider and ex-plore for further development. In order to assemble comparable results and to achieve the goal the model had to be able to solve the 5 following tasks: 1. Competency mapping, 2. Goal setting and reassessment, 3. Scheduling the training plan, 4. Accelerating the recruitment process, and 5. Promoting the continuous development of professionals. The frame-work was developed on the basis of the National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework (NICE Framework), which was revised to meet the needs of DF specialists, including EDL CDU. Additions were supplemented in terms of levels, specialization, and job descriptions. The proposals included the DF limitations and standards introduced in the work, which ultimately resulted in a proposal for a Digital Forensics Competency ontology, EDL CDU structure change, Suggested Instruc-tional Strategies for Digital Forensics Use With Each Level of revised Bloom's Taxonomy, a new DF standard subdivision – Unmanned Systems Forensics, and Digital Forensic Competency Model Framework. The list of tasks and skills were compiled from international certification distribution organizations and curricula, and their focus on DF Special-ist Competencies. Mini-Delphi or Estimate-Talk-Estimate (ETE) techniques were applied to evaluate the proposed model. An initial estimation of competencies and priorities were given to the EDL CDU partner institutions for expert advice and evaluation. Considering the feedback, improvements were made to the model and a proposal was put forward to the CDU with a future work plan. In general, the proposed competence framework describes the expected scope of competence of an DF specialist in the EDL CDU to enhance their role as a rapid response team. The framework helps in defining the expected compe-tencies and capabilities of digital forensics in practice and offers guidance to the experts in the choice of specialization. The proposed model takes into account the long-term effect (hire-to-retire). Due to the complexity of the model, the framework has a long implementation phase — the maximum time frame for achieving the full effect for the organization is expected to be 5 years. These proposals were approved by EDL CDU and the proposed plan was first launched in April 2019

    An Automated Approach for Digital Forensic Analysis of Heterogeneous Big Data

    Get PDF
    The major challenges with big data examination and analysis are volume, complex interdependence across content, and heterogeneity. The examination and analysis phases are considered essential to a digital forensics process. However, traditional techniques for the forensic investigation use one or more forensic tools to examine and analyse each resource. In addition, when multiple resources are included in one case, there is an inability to cross-correlate findings which often leads to inefficiencies in processing and identifying evidence. Furthermore, most current forensics tools cannot cope with large volumes of data. This paper develops a novel framework for digital forensic analysis of heterogeneous big data. The framework mainly focuses upon the investigations of three core issues: data volume, heterogeneous data and the investigators cognitive load in understanding the relationships between artefacts. The proposed approach focuses upon the use of metadata to solve the data volume problem, semantic web ontologies to solve the heterogeneous data sources and artificial intelligence models to support the automated identification and correlation of artefacts to reduce the burden placed upon the investigator to understand the nature and relationship of the artefacts

    Using a Goal-Driven Approach in the Investigation of a Questioned Contract

    Get PDF
    Part 3: FORENSIC TECHNIQUESInternational audienceThis paper presents a systematic process for describing digital forensic investigations. It focuses on forensic goals and anti-forensic obstacles and their operationalization in terms of human and software actions. The paper also demonstrates how the process can be used to capture the various forensic and anti-forensic aspects of a real-world case involving document forgery
    corecore