2,448 research outputs found

    From pixels to grixels: a unified functional model for geographic-object-based image analysis

    Get PDF
    Geographic Object-Based Image Analysis (GEOBIA) aims to better exploit earth remotely sensed imagery by focusing on building image-objects resembling the real-world objects instead of using raw pixels as basis for classiļ¬cation. Due to the recentness of the ļ¬eld, concurrent and sometimes competing methods, terminology, and theoretical approaches are evolving. This risk of babelization has been identiļ¬ed as one of the central threats for GEOBIA, as it could hinder scientiļ¬c discourse and the development of a generally accepted theoretical framework. This paper contributes to the deļ¬nition of such ontology by proposing a general functional model of the remote sensing image analysis. The model compartmentalizes the remote sensing process into six stages: (i) sensing the earth surface in order to derive pixels which represent incomplete data about real-world objects; (ii) pre-processing the pixels in order to remove atmospheric, geometric, and radiometric distortions; (iii) grouping the pre-processed pixels (prixels) to produce image-objects (grouped pixels or grixels) at one or several scales; (iv) feature analysis to examine and measure relevant spectral, geometric and contextual properties and relationships of grixels in order to produce feature vectors (vexcels) and decision rules for subsequent discrimination; (v) assignation of grixels to pre-deļ¬ned qualitative or quantitative land cover classes, thus producing pre-objects (preliminary objects); and (vi) post-processing to reļ¬ne the previous results and output the geographic objects of interest. The grouping stage may be analized from two different perpectives: (i) discrete segmentation which produces well-deļ¬ned image-objects, and (ii) continuous segmentation which produces image-ļ¬elds with indeterminate boundaries. The proposed generic model is applied to analyze two speciļ¬c GEOBIA software implementations. A functional decomposition of discrete segmentation is also discussed and tested. It is concluded that the proposed framework enhances the evaluation and comparison of different GEOBIA approaches and by this is helping to establish a generally accepted ontology

    Semantic Remote Sensing Scenes Interpretation and Change Interpretation

    Get PDF
    A fundamental objective of remote sensing imagery is to spread out the knowledge about our environment and to facilitate the interpretation of different phenomena affecting the Earthā€™s surface. The main goal of this chapter is to understand and interpret possible changes in order to define subsequently strategies and adequate decision-making for a better soil management and protection. Consequently, the semantic interpretation of remote sensing data, which consists of extracting useful information from image date for attaching semantics to the observed phenomenon, allows easy understanding and interpretation of such occurring changes. However, performing change interpretation task is not only based on the perceptual information derived from data but also based on additional knowledge sources such as a prior and contextual. This knowledge needs to be encoded in an appropriate way for being used as a guide in the interpretation process. On the other hand, interpretation may take place at several levels of complexity from the simple recognition of objects on the analyzed scene to the inference of site conditions and to change interpretation. For each level, information elements such as data, information and knowledge need to be represented and characterized. This chapter highlights the importance of ontologies exploiting for encoding the domain knowledge and for using it as a guide in the semantic scene interpretation task

    GEOBIA 2016 : Solutions and Synergies., 14-16 September 2016, University of Twente Faculty of Geo-Information and Earth Observation (ITC): open access e-book

    Get PDF

    Automated methods for image detection of cultural heritage: Overviews and perspectives

    Get PDF
    Remote sensing data covering large geographical areas can be easily accessed and are being acquired with greater frequency. The massive volume of data requires an automated image analysis system. By taking advantage of the increasing availability of data using computer vision, we can design specific systems to automate data analysis and detection of archaeological objects. In the past decade, there has been a rise in the use of automated methods to assist in the identification of archaeological sites in remote sensing imagery. These applications offer an important contribution to non-intrusive archaeological exploration, helping to reduce the traditional human workload and time by signalling areas with a higher probability of presenting archaeological sites for exploration. This survey describes the state of the art of existing automated image analysis methods in archaeology and highlights the improvements thus achieved in the detection of archaeological monuments and areas of interest in landscape-scale satellite and aerial imagery. It also presents a discussion of the benefits and limitations of automatic detection of archaeological structures, proposing new approaches and possibilities.info:eu-repo/semantics/publishedVersio

    MAPPING FROM SPACE ā€“ ONTOLOGY BASED MAP PRODUCTION USING SATELLITE IMAGERIES

    Get PDF

    Slum mapping : a comparison of single class learning and expert system object-oriented classification for mapping slum settlements in Addis Ababa city, Ethiopia

    Get PDF
    Dissertation submitted in partial fulfilment of the requirements for the degree of Master of Science in Geospatial TechnologiesUpdated spatial information on the dynamics of slums can be helpful to measure and evaluate the progress of urban upgrading projects and policies. Earlier studies have shown that remote sensing techniques, with the help of very-high resolution imagery, can play a significant role in detecting slums, and providing timely spatial information. The main objective of this thesis is to develop a reliable object-oriented slum identification technique that enables the provision of timely spatial information about slum settlements in Addis Ababa city. It compares the one-class support vector machines algorithm with the expert defined classification rule set in the discrimination of slums, using GeoEye-1 imagery. Two different approaches, called manual and automatic fine-tuning, were deployed to determine the best value of parameters in one-class support vector machines algorithm. The manual fine-tuning of the parameters is done using extensive manual trial. The automatic tuning is done using cross-validation grid search with the overall accuracy as the performance metric. Two regions of study were defined with different landscape compositions, providing different classification scenarios to compare the classification approaches. After image segmentation, twenty predictive variables were computed to characterize the objects in both study areas. An image analyst collected one hundred sample objects of a slum to be used as training for the single-class learner. In parallel, an image analyst has defined a hierarchical rule set to discriminate the class of interest. Results in both study areas indicate that the one-class support vector machine with manual tuning yields higher overall accuracy (97.7% in subset 1, and 92% in subset 2) and requiring much less application effort and computing time than the expert system
    • ā€¦
    corecore