3,106 research outputs found

    Intelligent Product Brokering for E-Commerce: An Incremental Approach to Unaccounted Attribute Detection

    Get PDF
    This research concentrates on designing generic product-brokering agent to understand user preference towards a product category and recommends a list of products to the user according to the preference captured by the agent. The proposed solution is able to detect both quantifiable and non-quantifiable attributes through a user feedback system. Unlike previous approaches, this research allows the detection of unaccounted attributes that are not within the ontology of the system. No tedious change of the algorithm, database, or ontology is required when a new product attribute is introduced. This approach only requires the attribute to be within the description field of the product. The system analyzes the general product descriptions field and creates a list of candidate attributes affecting the user’s preference. A genetic algorithm verifies these candidate attributes and excess attributes are identified and filtered off. A prototype has been created and our results show positive results in the detection of unaccounted attributes affecting a user

    An interactive metaheuristic search framework for software serviceidentification from business process models

    Get PDF
    In recent years, the Service-Oriented Architecture (SOA) model of computing has become widely used and has provided efficient and agile business solutions in response to inevitable and rapid changes in business requirements. Software service identification is a crucial component in the production of a service-oriented architecture and subsequent successful software development, yet current service identification methods have limitations. For example, service identification methods are either not sufficiently comprehensive to handle the totality of service identification activities, or they lack computational support, or they pay insufficient attention to quality checks of resulting services. To address these limitations, comprehensive computationally intelligent support for software engineers when deriving software services from an organisation’s business process models shows great potential, especially when the impact of human preference on the quality of the resulting solutions can be incorporated. Accordingly, this research attempts to apply interactive metaheuristic search to effectively bridge the gap between business and SOA technology and so increase business agility.A novel, comprehensive framework is introduced that is driven by domain independent role-based business process models, and uses an interactive metaheuristic search-based service identification approach based on a genetic algorithm, while adhering to SOA principles. Termed BPMiSearch, the framework is composed of three main layers. The first layer is concerned with processing inputs from business process models into search space elements by modelling input data and presenting them at an appropriate level of granularity. The second layer focuses on identifying software services from the specified search space. The third layer refines the resulting services to map the business elements in the resulting candidate services to the corresponding service components. The proposed BPMiSearch framework has been evaluated by applying it to a healthcare domain case study, specifically, Cancer Care and Registration (CCR) business processes at the King Hussein Cancer Centre, Amman, Jordan.Experiments show that the impact of software engineer interaction on the quality of the outcomes in terms of search effectiveness, efficiency, and level of user satisfaction, is assessed. Results show that BPMiSearch has rapid search performance to positively support software engineers in the identification of services from role-based business process models while adhering to SOA principles. High-quality services are identified that might not have been arrived at manually by software engineers. Furthermore, it is found that BPMiSearch is sensitive and responsive to software engineer interaction resulting in a positive level of user trust, acceptance, and satisfaction with the candidate services

    A canonical theory of dynamic decision-making

    Get PDF
    Decision-making behavior is studied in many very different fields, from medicine and eco- nomics to psychology and neuroscience, with major contributions from mathematics and statistics, computer science, AI, and other technical disciplines. However the conceptual- ization of what decision-making is and methods for studying it vary greatly and this has resulted in fragmentation of the field. A theory that can accommodate various perspectives may facilitate interdisciplinary working. We present such a theory in which decision-making is articulated as a set of canonical functions that are sufficiently general to accommodate diverse viewpoints, yet sufficiently precise that they can be instantiated in different ways for specific theoretical or practical purposes. The canons cover the whole decision cycle, from the framing of a decision based on the goals, beliefs, and background knowledge of the decision-maker to the formulation of decision options, establishing preferences over them, and making commitments. Commitments can lead to the initiation of new decisions and any step in the cycle can incorporate reasoning about previous decisions and the rationales for them, and lead to revising or abandoning existing commitments. The theory situates decision-making with respect to other high-level cognitive capabilities like problem solving, planning, and collaborative decision-making. The canonical approach is assessed in three domains: cognitive and neuropsychology, artificial intelligence, and decision engineering

    Automated analysis of feature models: Quo vadis?

    Get PDF
    Feature models have been used since the 90's to describe software product lines as a way of reusing common parts in a family of software systems. In 2010, a systematic literature review was published summarizing the advances and settling the basis of the area of Automated Analysis of Feature Models (AAFM). From then on, different studies have applied the AAFM in different domains. In this paper, we provide an overview of the evolution of this field since 2010 by performing a systematic mapping study considering 423 primary sources. We found six different variability facets where the AAFM is being applied that define the tendencies: product configuration and derivation; testing and evolution; reverse engineering; multi-model variability-analysis; variability modelling and variability-intensive systems. We also confirmed that there is a lack of industrial evidence in most of the cases. Finally, we present where and when the papers have been published and who are the authors and institutions that are contributing to the field. We observed that the maturity is proven by the increment in the number of journals published along the years as well as the diversity of conferences and workshops where papers are published. We also suggest some synergies with other areas such as cloud or mobile computing among others that can motivate further research in the future.Ministerio de Economía y Competitividad TIN2015-70560-RJunta de Andalucía TIC-186

    Automated Service Composition for Software Customization

    Get PDF
    While Service-Oriented Architecture helps the realization of Software Product Line, the current practice of manual composition of service components has become a bottleneck for the automation of customized software production. The web service-based applications are increasing in the present days. The use of web services for the development of the software with the idea of product line is a new feature. This approach not only uses clients\u27 requirements for the identification of candidate services, but also takes sensitivity into consideration when deciding the most suitable ones for a particular custom-made software system. This enhancement of service selection and composition leads to the development of an enhanced framework of service integration life-cycle, whose operation is presented in a new algorithm in this thesis. In addition to details of the framework, a case study is also included to examine the process of candidate identification, sensitivity analysis, service selection, and system composition for a customized online shopping system

    A Process Modelling Framework Based on Point Interval Temporal Logic with an Application to Modelling Patient Flows

    Get PDF
    This thesis considers an application of a temporal theory to describe and model the patient journey in the hospital accident and emergency (A&E) department. The aim is to introduce a generic but dynamic method applied to any setting, including healthcare. Constructing a consistent process model can be instrumental in streamlining healthcare issues. Current process modelling techniques used in healthcare such as flowcharts, unified modelling language activity diagram (UML AD), and business process modelling notation (BPMN) are intuitive and imprecise. They cannot fully capture the complexities of the types of activities and the full extent of temporal constraints to an extent where one could reason about the flows. Formal approaches such as Petri have also been reviewed to investigate their applicability to the healthcare domain to model processes. Additionally, to schedule patient flows, current modelling standards do not offer any formal mechanism, so healthcare relies on critical path method (CPM) and program evaluation review technique (PERT), that also have limitations, i.e. finish-start barrier. It is imperative to specify the temporal constraints between the start and/or end of a process, e.g., the beginning of a process A precedes the start (or end) of a process B. However, these approaches failed to provide us with a mechanism for handling these temporal situations. If provided, a formal representation can assist in effective knowledge representation and quality enhancement concerning a process. Also, it would help in uncovering complexities of a system and assist in modelling it in a consistent way which is not possible with the existing modelling techniques. The above issues are addressed in this thesis by proposing a framework that would provide a knowledge base to model patient flows for accurate representation based on point interval temporal logic (PITL) that treats point and interval as primitives. These objects would constitute the knowledge base for the formal description of a system. With the aid of the inference mechanism of the temporal theory presented here, exhaustive temporal constraints derived from the proposed axiomatic system’ components serves as a knowledge base. The proposed methodological framework would adopt a model-theoretic approach in which a theory is developed and considered as a model while the corresponding instance is considered as its application. Using this approach would assist in identifying core components of the system and their precise operation representing a real-life domain deemed suitable to the process modelling issues specified in this thesis. Thus, I have evaluated the modelling standards for their most-used terminologies and constructs to identify their key components. It will also assist in the generalisation of the critical terms (of process modelling standards) based on their ontology. A set of generalised terms proposed would serve as an enumeration of the theory and subsume the core modelling elements of the process modelling standards. The catalogue presents a knowledge base for the business and healthcare domains, and its components are formally defined (semantics). Furthermore, a resolution theorem-proof is used to show the structural features of the theory (model) to establish it is sound and complete. After establishing that the theory is sound and complete, the next step is to provide the instantiation of the theory. This is achieved by mapping the core components of the theory to their corresponding instances. Additionally, a formal graphical tool termed as point graph (PG) is used to visualise the cases of the proposed axiomatic system. PG facilitates in modelling, and scheduling patient flows and enables analysing existing models for possible inaccuracies and inconsistencies supported by a reasoning mechanism based on PITL. Following that, a transformation is developed to map the core modelling components of the standards into the extended PG (PG*) based on the semantics presented by the axiomatic system. A real-life case (from the King’s College hospital accident and emergency (A&E) department’s trauma patient pathway) is considered to validate the framework. It is divided into three patient flows to depict the journey of a patient with significant trauma, arriving at A&E, undergoing a procedure and subsequently discharged. Their staff relied upon the UML-AD and BPMN to model the patient flows. An evaluation of their representation is presented to show the shortfalls of the modelling standards to model patient flows. The last step is to model these patient flows using the developed approach, which is supported by enhanced reasoning and scheduling

    New Fundamental Technologies in Data Mining

    Get PDF
    The progress of data mining technology and large public popularity establish a need for a comprehensive text on the subject. The series of books entitled by "Data Mining" address the need by presenting in-depth description of novel mining algorithms and many useful applications. In addition to understanding each section deeply, the two books present useful hints and strategies to solving problems in the following chapters. The contributing authors have highlighted many future research directions that will foster multi-disciplinary collaborations and hence will lead to significant development in the field of data mining

    Managing risk in open source software adoption

    Get PDF
    By 2016 an estimated 95% of all commercial software packages will include Open Source Software (OSS). This extended adoption is yet not avoiding failure rates in OSS projects to be as high as 50%. Inadequate risk management has been identified among the top mistakes to avoid when implementing OSS-based solutions. Understanding, managing and mitigating OSS adoption risks is therefore crucial to avoid potentially significant adverse impact on the business. In this position paper we portray a short report of work in progress on risk management in OSS adoption processes. We present a risk-aware technical decision-making management platform integrated in a business-oriented decision-making framework, which together support placing technical OSS adoption decisions into organizational, business strategy as well as the broader OSS community context. The platform will be validated against a collection of use cases coming from different types of organizations: big companies, SMEs, public administration, consolidated OSS communities and emergent small OSS products.Postprint (published version
    corecore