144,155 research outputs found

    The Information-Flow Approach to Ontology-Based Semantic Integration

    No full text
    In this article we argue for the lack of formal foundations for ontology-based semantic alignment. We analyse and formalise the basic notions of semantic matching and alignment and we situate them in the context of ontology-based alignment in open-ended and distributed environments, like the Web. We then use the mathematical notion of information flow in a distributed system to ground three hypotheses that enable semantic alignment. We draw our exemplar applications of this work from a variety of interoperability scenarios including ontology mapping, theory of semantic interoperability, progressive ontology alignment, and situated semantic alignment

    The Form of Organization for Small Business

    Get PDF
    Matching and integrating ontologies has been a desirable technique in areas such as data fusion, knowledge integration, the Semantic Web and the development of advanced services in distributed system. Unfortunately, the heterogeneities of ontologies cause big obstacles in the development of this technique. This licentiate thesis describes an approach to tackle the problem of ontology integration using description logics and production rules, both on a syntactic level and on a semantic level. Concepts in ontologies are matched and integrated to generate ontology intersections. Context is extracted and rules for handling heterogeneous ontology reasoning with contexts are developed. Ontologies are integrated by two processes. The first integration is to generate an ontology intersection from two OWL ontologies. The result is an ontology intersection, which is an independent ontology containing non-contradictory assertions based on the original ontologies. The second integration is carried out by rules that extract context, such as ontology content and ontology description data, e.g. time and ontology creator. The integration is designed for conceptual ontology integration. The information of instances isn't considered, neither in the integrating process nor in the integrating results. An ontology reasoner is used in the integration process for non-violation check of two OWL ontologies and a rule engine for handling conflicts according to production rules. The ontology reasoner checks the satisfiability of concepts with the help of anchors, i.e. synonyms and string-identical entities; production rules are applied to integrate ontologies, with the constraint that the original ontologies should not be violated. The second integration process is carried out with production rules with context data of the ontologies. Ontology reasoning, in a repository, is conducted within the boundary of each ontology. Nonetheless, with context rules, reasoning is carried out across ontologies. The contents of an ontology provide context for its defined entities and are extracted to provide context with the help of an ontology reasoner. Metadata of ontologies are criteria that are useful for describing ontologies. Rules using context, also called context rules, are developed and in-built in the repository. New rules can also be added. The scientific contribution of the thesis is the suggested approach applying semantic based techniques to provide a complementary method for ontology matching and integrating semantically. With the illustration of the ontology integration process and the context rules and a few manually integrated ontology results, the approach shows the potential to help to develop advanced knowledge-based services.QC 20130201</p

    Active Ontology: An Information Integration Approach for Dynamic Information Sources

    Get PDF
    In this paper we describe an ontology-based information integration approach that is suitable for highly dynamic distributed information sources, such as those available in Grid systems. The main challenges addressed are: 1) information changes frequently and information requests have to be answered quickly in order to provide up-to-date information; and 2) the most suitable information sources have to be selected from a set of different distributed ones that can provide the information needed. To deal with the first challenge we use an information cache that works with an update-on-demand policy. To deal with the second we add an information source selection step to the usual architecture used for ontology-based information integration. To illustrate our approach, we have developed an information service that aggregates metadata available in hundreds of information services of the EGEE Grid infrastructure

    Towards semantic software engineering environments

    Get PDF
    Software tools processing partially common set of data should share an understanding of what these data mean. Since ontologies have been used to express formally a shared understanding of information, we argue that they are a way towards Semantic SEEs. In this paper we discuss an ontology-based approach to tool integration and present ODE, an ontology-based SEE

    A New role of ontologies and advanced scientific visualization in big data analytics

    Get PDF
    Accessing and contextual semantic searching structured, semi-structured and unstructured information resources and their ontology based analysis in a uniform way across text-free Big Data query implementation is a main feature of approach under discussion. To increase the semantic power of query results’ analysis the ontology based implementation of multiplatform adaptive tools of scientific visualization are demonstrated. The ontologies are used not for integration of heterogeneous resources in traditional way but for parallel analysis of recourses and its related ontologies to achieve the effect of a virtual integration

    An Ontology-Based Method for Semantic Integration of Business Components

    Full text link
    Building new business information systems from reusable components is today an approach widely adopted and used. Using this approach in analysis and design phases presents a great interest and requires the use of a particular class of components called Business Components (BC). Business Components are today developed by several manufacturers and are available in many repositories. However, reusing and integrating them in a new Information System requires detection and resolution of semantic conflicts. Moreover, most of integration and semantic conflict resolution systems rely on ontology alignment methods based on domain ontology. This work is positioned at the intersection of two research areas: Integration of reusable Business Components and alignment of ontologies for semantic conflict resolution. Our contribution concerns both the proposal of a BC integration solution based on ontologies alignment and a method for enriching the domain ontology used as a support for alignment.Comment: IEEE New Technologies of Distributed Systems (NOTERE), 2011 11th Annual International Conference; ISSN: 2162-1896 Print ISBN: 978-1-4577-0729-2 INSPEC Accession Number: 12122775 201

    Query optimization for ontology-based information integration

    Full text link
    corecore