3,897 research outputs found

    Semantic Support for Log Analysis of Safety-Critical Embedded Systems

    Full text link
    Testing is a relevant activity for the development life-cycle of Safety Critical Embedded systems. In particular, much effort is spent for analysis and classification of test logs from SCADA subsystems, especially when failures occur. The human expertise is needful to understand the reasons of failures, for tracing back the errors, as well as to understand which requirements are affected by errors and which ones will be affected by eventual changes in the system design. Semantic techniques and full text search are used to support human experts for the analysis and classification of test logs, in order to speedup and improve the diagnosis phase. Moreover, retrieval of tests and requirements, which can be related to the current failure, is supported in order to allow the discovery of available alternatives and solutions for a better and faster investigation of the problem.Comment: EDCC-2014, BIG4CIP-2014, Embedded systems, testing, semantic discovery, ontology, big dat

    Semantically defined Analytics for Industrial Equipment Diagnostics

    Get PDF
    In this age of digitalization, industries everywhere accumulate massive amount of data such that it has become the lifeblood of the global economy. This data may come from various heterogeneous systems, equipment, components, sensors, systems and applications in many varieties (diversity of sources), velocities (high rate of changes) and volumes (sheer data size). Despite significant advances in the ability to collect, store, manage and filter data, the real value lies in the analytics. Raw data is meaningless, unless it is properly processed to actionable (business) insights. Those that know how to harness data effectively, have a decisive competitive advantage, through raising performance by making faster and smart decisions, improving short and long-term strategic planning, offering more user-centric products and services and fostering innovation. Two distinct paradigms in practice can be discerned within the field of analytics: semantic-driven (deductive) and data-driven (inductive). The first emphasizes logic as a way of representing the domain knowledge encoded in rules or ontologies and are often carefully curated and maintained. However, these models are often highly complex, and require intensive knowledge processing capabilities. Data-driven analytics employ machine learning (ML) to directly learn a model from the data with minimal human intervention. However, these models are tuned to trained data and context, making it difficult to adapt. Industries today that want to create value from data must master these paradigms in combination. However, there is great need in data analytics to seamlessly combine semantic-driven and data-driven processing techniques in an efficient and scalable architecture that allows extracting actionable insights from an extreme variety of data. In this thesis, we address these needs by providing: ‱ A unified representation of domain-specific and analytical semantics, in form of ontology models called TechOnto Ontology Stack. It is highly expressive, platform-independent formalism to capture conceptual semantics of industrial systems such as technical system hierarchies, component partonomies etc and its analytical functional semantics. ‱ A new ontology language Semantically defined Analytical Language (SAL) on top of the ontology model that extends existing DatalogMTL (a Horn fragment of Metric Temporal Logic) with analytical functions as first class citizens. ‱ A method to generate semantic workflows using our SAL language. It helps in authoring, reusing and maintaining complex analytical tasks and workflows in an abstract fashion. ‱ A multi-layer architecture that fuses knowledge- and data-driven analytics into a federated and distributed solution. To our knowledge, the work in this thesis is one of the first works to introduce and investigate the use of the semantically defined analytics in an ontology-based data access setting for industrial analytical applications. The reason behind focusing our work and evaluation on industrial data is due to (i) the adoption of semantic technology by the industries in general, and (ii) the common need in literature and in practice to allow domain expertise to drive the data analytics on semantically interoperable sources, while still harnessing the power of analytics to enable real-time data insights. Given the evaluation results of three use-case studies, our approach surpass state-of-the-art approaches for most application scenarios.Im Zeitalter der Digitalisierung sammeln die Industrien ĂŒberall massive Daten-mengen, die zum Lebenselixier der Weltwirtschaft geworden sind. Diese Daten können aus verschiedenen heterogenen Systemen, GerĂ€ten, Komponenten, Sensoren, Systemen und Anwendungen in vielen Varianten (Vielfalt der Quellen), Geschwindigkeiten (hohe Änderungsrate) und Volumina (reine DatengrĂ¶ĂŸe) stammen. Trotz erheblicher Fortschritte in der FĂ€higkeit, Daten zu sammeln, zu speichern, zu verwalten und zu filtern, liegt der eigentliche Wert in der Analytik. Rohdaten sind bedeutungslos, es sei denn, sie werden ordnungsgemĂ€ĂŸ zu verwertbaren (GeschĂ€fts-)Erkenntnissen verarbeitet. Wer weiß, wie man Daten effektiv nutzt, hat einen entscheidenden Wettbewerbsvorteil, indem er die Leistung steigert, indem er schnellere und intelligentere Entscheidungen trifft, die kurz- und langfristige strategische Planung verbessert, mehr benutzerorientierte Produkte und Dienstleistungen anbietet und Innovationen fördert. In der Praxis lassen sich im Bereich der Analytik zwei unterschiedliche Paradigmen unterscheiden: semantisch (deduktiv) und Daten getrieben (induktiv). Die erste betont die Logik als eine Möglichkeit, das in Regeln oder Ontologien kodierte DomĂ€nen-wissen darzustellen, und wird oft sorgfĂ€ltig kuratiert und gepflegt. Diese Modelle sind jedoch oft sehr komplex und erfordern eine intensive Wissensverarbeitung. Datengesteuerte Analysen verwenden maschinelles Lernen (ML), um mit minimalem menschlichen Eingriff direkt ein Modell aus den Daten zu lernen. Diese Modelle sind jedoch auf trainierte Daten und Kontext abgestimmt, was die Anpassung erschwert. Branchen, die heute Wert aus Daten schaffen wollen, mĂŒssen diese Paradigmen in Kombination meistern. Es besteht jedoch ein großer Bedarf in der Daten-analytik, semantisch und datengesteuerte Verarbeitungstechniken nahtlos in einer effizienten und skalierbaren Architektur zu kombinieren, die es ermöglicht, aus einer extremen Datenvielfalt verwertbare Erkenntnisse zu gewinnen. In dieser Arbeit, die wir auf diese BedĂŒrfnisse durch die Bereitstellung: ‱ Eine einheitliche Darstellung der DomĂ€nen-spezifischen und analytischen Semantik in Form von Ontologie Modellen, genannt TechOnto Ontology Stack. Es ist ein hoch-expressiver, plattformunabhĂ€ngiger Formalismus, die konzeptionelle Semantik industrieller Systeme wie technischer Systemhierarchien, Komponenten-partonomien usw. und deren analytische funktionale Semantik zu erfassen. ‱ Eine neue Ontologie-Sprache Semantically defined Analytical Language (SAL) auf Basis des Ontologie-Modells das bestehende DatalogMTL (ein Horn fragment der metrischen temporĂ€ren Logik) um analytische Funktionen als erstklassige BĂŒrger erweitert. ‱ Eine Methode zur Erzeugung semantischer workflows mit unserer SAL-Sprache. Es hilft bei der Erstellung, Wiederverwendung und Wartung komplexer analytischer Aufgaben und workflows auf abstrakte Weise. ‱ Eine mehrschichtige Architektur, die Wissens- und datengesteuerte Analysen zu einer föderierten und verteilten Lösung verschmilzt. Nach unserem Wissen, die Arbeit in dieser Arbeit ist eines der ersten Werke zur EinfĂŒhrung und Untersuchung der Verwendung der semantisch definierten Analytik in einer Ontologie-basierten Datenzugriff Einstellung fĂŒr industrielle analytische Anwendungen. Der Grund fĂŒr die Fokussierung unserer Arbeit und Evaluierung auf industrielle Daten ist auf (i) die Übernahme semantischer Technologien durch die Industrie im Allgemeinen und (ii) den gemeinsamen Bedarf in der Literatur und in der Praxis zurĂŒckzufĂŒhren, der es der Fachkompetenz ermöglicht, die Datenanalyse auf semantisch inter-operablen Quellen voranzutreiben, und nutzen gleichzeitig die LeistungsfĂ€higkeit der Analytik, um Echtzeit-Daten-einblicke zu ermöglichen. Aufgrund der Evaluierungsergebnisse von drei AnwendungsfĂ€llen Übertritt unser Ansatz fĂŒr die meisten Anwendungsszenarien Modernste AnsĂ€tze

    Semantic data ingestion for intelligent, value-driven big data analytics

    Get PDF
    In this position paper we describe a conceptual model for intelligent Big Data analytics based on both semantic and machine learning AI techniques (called AI ensembles). These processes are linked to business outcomes by explicitly modelling data value and using semantic technologies as the underlying mode for communication between the diverse processes and organisations creating AI ensembles. Furthermore, we show how data governance can direct and enhance these ensembles by providing recommendations and insights that to ensure the output generated produces the highest possible value for the organisation

    Enabling IoT stream management in multi-cloud environment by orchestration

    Get PDF
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists, or reuse of any copyrighted components of this work in other works.Every-Day lives are becoming increasingly instrumented by electronic devices and any kind of computer-based (distributed) service. As a result, organizations need to analyse an enormous amounts of data in order to increase their incomings or to improve their services. Anyway, setting-up a private infrastructure to execute analytics over Big Data is still expensive. The exploitation of Cloud infrastructure in IoT Stream management is appealing because of costs reductions and potentiality of storage, network and computing resources. The Cloud can consistently reduce the cost of analysis of data from different sources, opening analytics to big storages in a multi-cloud environment. Anyway, creating and executing this kind of service is very complex since different resources have to be provisioned and coordinated depending on users' needs. Orchestration is a solution to this problem, but it requires proper languages and methodologies for automatic composition and execution. In this work we propose a methodology for composition of services used for analyses of different IoT Stream and, in general, Big Data sources: in particular an Orchestration language is reported able to describe composite services and resources in a multi-cloud environment.Peer ReviewedPostprint (author's final draft
    • 

    corecore