1,190 research outputs found

    The Development of Digital Forensics Workforce Competency on the Example of Estonian Defence League

    Get PDF
    03.07.2014 kehtestati Vabariigi Valitsuse määrus nr. 108, mis reguleerib Kaitseliidu kaasamise tingimusi ja korda küberjulgeoleku tagamisel. Seega võivad Kaitseliidu küberkaitse üksuse (KL KKÜ edaspidi KKÜ) kutsuda olukorda toetama erinevad asutused: näiteks Riigi Infosüsteemide amet (RIA), infosüsteemi järelevalveasutus või kaitseministeerium või selle valitsemisala ametiasutused oma ülesannete raames. KKÜ-d saab kaasata info- ja sidetehnoloogia infrastruktuuri järjepidevuse tagamisel, turvaintsidentide kontrollimisel ja lahendamisel, rakendades nii aktiivseid kui passiivseid meetmeid. KKÜ ülesannete kaardistamisel täheldati, et KKÜ partnerasutused / organisatsioonid ei ole kaardistanud oma spetsialistide olemasolevaid pädevusi ja sellele lisaks puudub ülevaade digitaalse ekspertiisi kogukonnas vajaolevatest pädevustest. Leitut arvesse võttes seati ülesandeks vajadustest ja piirangutest (võttes arvesse digitaalse ekspertiisi kogukonda kujundavaid standardeid) ülevaatliku pildi loomine, et töötada välja digitaalse ekspertiisi kompetentsipõhine raamistik, mis toetab KKÜ spetsialistide arendamist palkamisest pensionini. Selleks uurisime KKÜ ja nende olemasolevate koolitusprogrammide hetkeolukorda ning otsustasime milliseid omadusi peab edasise arengu tarbeks uurima ja kaaluma. Võrreldavate tulemuste saa-miseks ja eesmärgi täitmiseks pidi koostatav mudel olema suuteline lahendama 5-t järgnevat ülesannet: 1. Oskuste kaardistamine, 2. Eesmärkide seadmine ja ümberhindamine, 3. Koolituskava planeerimine, 4. Värbamisprotsessi kiirendamine ning 5. Spetsialistide kestva arengu soodustamine. Raamistiku väljatöötamiseks võeti aluseks National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework (NICE Framework) pädevusraamistik mida parendati digitaalse ekspertiisi spetsialistide, ja käesoleval juhul ka KKÜ, vajadusi silmas pidades. Täiendusi lisati nii tasemete, spetsialiseerumise kui ka ülesannete kirjelduste kujul. Parenduste lisamisel võeti arvesse töös tutvustatud digitaalse ekspertiisi piiranguid ja standardeid, mille lõpptulemusena esitati KKÜ-le Digitaalse Ekspertiisi Pädevuse ontoloogia, KKÜ struktuuri muudatuse ettepanek, soovitatavad õpetamisstrateegiad digitaalse ekspertiisi kasutamiseks (muudetud Bloomi taksonoomia tasemetega), uus digitaalse ekspertiisi standardi alajaotus – Mehitamata Süsteemide ekspertiis ja Digitaalse Ekspertiisi Pädevuse Mudeli Raamistik. Ülesannete ja oskuste loetelu koostati rahvusvaheliselt tunnustatud sertifitseerimis-organisatsioonide ja erialast pädevust pakkuvate õppekavade abil. Kavandatava mudeli hindamiseks kasutati mini-Delphi ehk Estimate-Talk-Estimate (ETE) tehnikat. Esialgne prognoos vajaduste ja prioriteetidega anti KKÜ partnerasutustele saamaks tehtud töö kohta ekspertarvamusi. Kogu tagasisidet silmas pidades tehti mudelisse korrektuurid ja KKÜ-le sai vormistatud ettepanek ühes edasise tööplaaniga. Üldiselt kirjeldab väljapakutud pädevusraamistik KKÜ spetsialistilt ooda-tavat pädevuse ulatust KKÜ-s, et suurendada nende rolli kiirreageerimisrühmana. Raamistik aitab määratleda digitaalse ekspertiisi eeldatavaid pädevusi ja võimekusi praktikas ning juhendab eksperte spetsialiseerumise valikul. Kavandatud mudeli juures on arvestatud pikaajalise mõjuga (palkamisest pensionini). Tulenevalt mudeli komplekssusest, on raamistikul pikk rakendusfaas – organisatsiooni arengule maksimaalse mõju saavutamiseks on prognoositud ajakava maksimaalselt 5 aastat. Antud ettepanekud on käesolevaks hetkeks KKÜ poolt heaks kiidetud ning planeeritud kava rakendati esmakordselt 2019 aasta aprillikuus.In 03.07.2014 Regulation No. 108 was introduced which regulates the conditions and pro-cedure of the involvement of the Estonian Defence League (EDL) Cyber Defence Unit (CDU) in ensuring cyber security. This means that EDL can be brought in by the Information System Authority, Ministry of Defence or the authorities of its area of government within the scope of either of their tasks e.g. ensuring the continuity of information and communication technology infrastructure and in handling and solving cyber security incidents while applying both active and passive measures. In January 2018 EDL CDU’s Digi-tal Evidence Handling Group had to be re-organized and, thus, presented a proposal for internal curriculum in order to further instruct Digital Evidence specialists. While describing the CDU's tasks, it was noted that the CDU's partner institutions / organizations have not mapped out their specialists’ current competencies. With this in mind, we set out to create a comprehensive list of needs and constraints (taking into account the community standards of DF) to develop a DF-based competence framework that supports the devel-opment of CDU professionals. Hence, we studied the current situation of CDU, their existing training program, and contemplated which features we need to consider and ex-plore for further development. In order to assemble comparable results and to achieve the goal the model had to be able to solve the 5 following tasks: 1. Competency mapping, 2. Goal setting and reassessment, 3. Scheduling the training plan, 4. Accelerating the recruitment process, and 5. Promoting the continuous development of professionals. The frame-work was developed on the basis of the National Initiative for Cybersecurity Education (NICE) Cybersecurity Workforce Framework (NICE Framework), which was revised to meet the needs of DF specialists, including EDL CDU. Additions were supplemented in terms of levels, specialization, and job descriptions. The proposals included the DF limitations and standards introduced in the work, which ultimately resulted in a proposal for a Digital Forensics Competency ontology, EDL CDU structure change, Suggested Instruc-tional Strategies for Digital Forensics Use With Each Level of revised Bloom's Taxonomy, a new DF standard subdivision – Unmanned Systems Forensics, and Digital Forensic Competency Model Framework. The list of tasks and skills were compiled from international certification distribution organizations and curricula, and their focus on DF Special-ist Competencies. Mini-Delphi or Estimate-Talk-Estimate (ETE) techniques were applied to evaluate the proposed model. An initial estimation of competencies and priorities were given to the EDL CDU partner institutions for expert advice and evaluation. Considering the feedback, improvements were made to the model and a proposal was put forward to the CDU with a future work plan. In general, the proposed competence framework describes the expected scope of competence of an DF specialist in the EDL CDU to enhance their role as a rapid response team. The framework helps in defining the expected compe-tencies and capabilities of digital forensics in practice and offers guidance to the experts in the choice of specialization. The proposed model takes into account the long-term effect (hire-to-retire). Due to the complexity of the model, the framework has a long implementation phase — the maximum time frame for achieving the full effect for the organization is expected to be 5 years. These proposals were approved by EDL CDU and the proposed plan was first launched in April 2019

    Experience Constructing the Artifact Genome Project (AGP): Managing the Domain\u27s Knowledge One Artifact at a Time

    Get PDF
    While various tools have been created to assist the digital forensics community with acquiring, processing, and organizing evidence and indicating the existence of artifacts, very few attempts have been made to establish a centralized system for archiving artifacts. The Artifact Genome Project (AGP) has aimed to create the largest vetted and freely available digital forensics repository for Curated Forensic Artifacts (CuFAs). This paper details the experience of building, implementing, and maintaining such a system by sharing design decisions, lessons learned, and future work. We also discuss the impact of AGP in both the professional and academic realms of digital forensics. Our work shows promise in the digital forensics academic community to champion the effort in curating digital forensic artifacts by integrating AGP into courses, research endeavors, and collaborative projects

    A semantic methodology for (un)structured digital evidences analysis

    Get PDF
    Nowadays, more than ever, digital forensics activities are involved in any criminal, civil or military investigation and represent a fundamental tool to support cyber-security. Investigators use a variety of techniques and proprietary software forensic applications to examine the copy of digital devices, searching hidden, deleted, encrypted, or damaged files or folders. Any evidence found is carefully analysed and documented in a "finding report" in preparation for legal proceedings that involve discovery, depositions, or actual litigation. The aim is to discover and analyse patterns of fraudulent activities. In this work, a new methodology is proposed to support investigators during the analysis process, correlating evidences found through different forensic tools. The methodology was implemented through a system able to add semantic assertion to data generated by forensics tools during extraction processes. These assertions enable more effective access to relevant information and enhanced retrieval and reasoning capabilities

    Proactive extraction of IoT device capabilities for security applications

    Get PDF
    2020 Spring.Includes bibliographical references.Internet of Things (IoT) device adoption is on the rise. Such devices are mostly self-operated and require minimum user interventions. This is achieved by abstracting away their design complexities and functionalities from users. However, this abstraction significantly limits a user's insights on evaluating the true capabilities (i.e., what actions a device can perform) of a device and hence, its potential security and privacy threats. Most existing works evaluate the security of those devices by analyzing the environment data (e.g., network traffic, sensor data, etc.). However, such approaches entail collecting data from encrypted traffic, relying on the quality of the collected data for their accuracy, and facing difficulties in preserving both utility and privacy of the data. We overcome the above-mentioned challenges and propose a proactive approach to extract IoT device capabilities from their informational specifications to verify their potential threats, even before a device is installed. More specifically, we first introduce a model for device capabilities in the context of IoT. Second, we devise a technique to parse the vendor-provided materials of IoT devices and enumerate device capabilities from them. Finally, we apply the obtained capability model and extraction technique in a proactive access control model to demonstrate the applicability of our proposed solution. We evaluate our capability extraction approach in terms of its efficiency and enumeration accuracy on devices from three different vendors

    Adding Digital Forensic Readiness as a Security Component to the IoT Domain

    Get PDF
    The unique identities of remote sensing, monitoring, self-actuating, self–adapting and self-configuring “things” in Internet of Things (IoT) has come out as fundamental building blocks for the development of “smart environments”. This experience has begun to be felt across different IoT-based domains like healthcare, surveillance, energy systems, home appliances, industrial machines, smart grids and smart cities. These developments have, however, brought about a more complex and heterogeneous environment which is slowly becoming a home to cyber attackers. Digital Forensic Readiness (DFR) though can be employed as a mechanism for maximizing the potential use of digital evidence while minimizing the cost of conducting a digital forensic investigation process in IoT environments in case of an incidence. The problem addressed in this paper, therefore, is that at the time of writing this paper, there still exist no IoT architectures that have a DFR capability that is able to attain incident preparedness across IoT environments as a mechanism of preparing for post-event response process. It is on this premise, that the authors are proposing an architecture for incorporating DFR to IoT domain for proper planning and preparing in the case of security incidents. It is paramount to note that the DFR mechanism in IoT discussed in this paper complies with ISO/IEC 27043: 2015, 27030:2012 and 27017: 2015 international standards. It is the authors’ opinion that the architecture is holistic and very significant in IoT forensics

    e-Business challenges and directions: important themes from the first ICE-B workshop

    Get PDF
    A three-day asynchronous, interactive workshop was held at ICE-B’10 in Piraeus, Greece in July of 2010. This event captured conference themes for e-Business challenges and directions across four subject areas: a) e-Business applications and models, b) enterprise engineering, c) mobility, d) business collaboration and e-Services, and e) technology platforms. Quality Function Deployment (QFD) methods were used to gather, organize and evaluate themes and their ratings. This paper summarizes the most important themes rated by participants: a) Since technology is becoming more economic and social in nature, more agile and context-based application develop methods are needed. b) Enterprise engineering approaches are needed to support the design of systems that can evolve with changing stakeholder needs. c) The digital native groundswell requires changes to business models, operations, and systems to support Prosumers. d) Intelligence and interoperability are needed to address Prosumer activity and their highly customized product purchases. e) Technology platforms must rapidly and correctly adapt, provide widespread offerings and scale appropriately, in the context of changing situational contexts
    corecore