175 research outputs found

    Open Large-Scale Online Social Network Dyn

    Get PDF
    Online social networks have quickly become the most popular destination on the World Wide Web. These networks are still a fairly new form of online human interaction and have gained wide popularity only recently within the past three to four years. Few models or descriptions of the dynamics of these systems exist. This is largely due to the difficulty in gaining access to the data from these networks which is often viewed as very valuable. In these networks, members maintain list of friends with which they share content with by first uploading it to the social network service provider. The content is then distributed to members by the service provider who generates a feed for each member containing the content shared by all of the member's friends aggregated together. Direct access to dynamic linkage data for these large networks is especially difficult without a special relationship with the service provider. This makes it difficult for researchers to explore and better understand how humans interface with these systems. This dissertation examines an event driven sampling approach to acquire both dynamics link event data and blog content from the site known as LiveJournal. LiveJournal is one of the oldest online social networking sites whose features are very similar to sites such as Facebook and Myspace yet smaller in scale as to be practical for a research setting. The event driven sampling methodology and analysis of the resulting network model provide insights for other researchers interested in acquiring social network dynamics from LiveJournal or insight into what might be expected if an event driven sampling approach was applied to other online social networks. A detailed analysis of both the static structure and network dynamics of the resulting network model was performed. The analysis helped motivated work on a model of link prediction using both topological and content-based metrics. The relationship between topological and content-based metrics was explored. Factored into the link prediction analysis is the open nature of the social network data where new members are constantly joining and current members are leaving. The data used for the analysis spanned approximately two years

    Exploring knowledge bases for engineering a user interests hierarchy for social network applications

    Get PDF
    Master of ScienceDepartment of Computing and Information SciencesDoina CarageaGurdip SinghIn the recent years, social networks have become an integral part of our lives. Their outgrowth has resulted in opportunities for interesting data mining problems, such as interest or friendship recommendations. A global ontology over the interests specified by the users of a social network is essential for accurate recommendations. The focus of this work is on engineering such an interest ontology. In particular, given that the resulting ontology is meant to be used for data mining applications to social network problems, we explore only hierarchical ontologies. We propose, evaluate and compare three approaches to engineer an interest hierarchy. The proposed approaches make use of two popular knowledge bases, Wikipedia and Directory Mozilla, to extract interest definitions and/or relationships between interests. More precisely, the first approach uses Wikipedia to find interest definitions, the latent semantic analysis technique to measure the similarity between interests based on their definitions, and an agglomerative clustering algorithm to group similar interests into higher level concepts. The second approach uses the Wikipedia Category Graph to extract relationships between interests. Similarly, the third approach uses Directory Mozilla to extract relationships between interests. Our results indicate that the third approach, although the simplest, is the most effective for building an ontology over user interests. We use the ontology produced by the third approach to construct interest based features. These features are further used to learn classifiers for the friendship prediction task. The results show the usefulness of the ontology with respect to the results obtained in absence of the ontology

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Application of Common Sense Computing for the Development of a Novel Knowledge-Based Opinion Mining Engine

    Get PDF
    The ways people express their opinions and sentiments have radically changed in the past few years thanks to the advent of social networks, web communities, blogs, wikis and other online collaborative media. The distillation of knowledge from this huge amount of unstructured information can be a key factor for marketers who want to create an image or identity in the minds of their customers for their product, brand, or organisation. These online social data, however, remain hardly accessible to computers, as they are specifically meant for human consumption. The automatic analysis of online opinions, in fact, involves a deep understanding of natural language text by machines, from which we are still very far. Hitherto, online information retrieval has been mainly based on algorithms relying on the textual representation of web-pages. Such algorithms are very good at retrieving texts, splitting them into parts, checking the spelling and counting their words. But when it comes to interpreting sentences and extracting meaningful information, their capabilities are known to be very limited. Existing approaches to opinion mining and sentiment analysis, in particular, can be grouped into three main categories: keyword spotting, in which text is classified into categories based on the presence of fairly unambiguous affect words; lexical affinity, which assigns arbitrary words a probabilistic affinity for a particular emotion; statistical methods, which calculate the valence of affective keywords and word co-occurrence frequencies on the base of a large training corpus. Early works aimed to classify entire documents as containing overall positive or negative polarity, or rating scores of reviews. Such systems were mainly based on supervised approaches relying on manually labelled samples, such as movie or product reviews where the opinionist’s overall positive or negative attitude was explicitly indicated. However, opinions and sentiments do not occur only at document level, nor they are limited to a single valence or target. Contrary or complementary attitudes toward the same topic or multiple topics can be present across the span of a document. In more recent works, text analysis granularity has been taken down to segment and sentence level, e.g., by using presence of opinion-bearing lexical items (single words or n-grams) to detect subjective sentences, or by exploiting association rule mining for a feature-based analysis of product reviews. These approaches, however, are still far from being able to infer the cognitive and affective information associated with natural language as they mainly rely on knowledge bases that are still too limited to efficiently process text at sentence level. In this thesis, common sense computing techniques are further developed and applied to bridge the semantic gap between word-level natural language data and the concept-level opinions conveyed by these. In particular, the ensemble application of graph mining and multi-dimensionality reduction techniques on two common sense knowledge bases was exploited to develop a novel intelligent engine for open-domain opinion mining and sentiment analysis. The proposed approach, termed sentic computing, performs a clause-level semantic analysis of text, which allows the inference of both the conceptual and emotional information associated with natural language opinions and, hence, a more efficient passage from (unstructured) textual information to (structured) machine-processable data. The engine was tested on three different resources, namely a Twitter hashtag repository, a LiveJournal database and a PatientOpinion dataset, and its performance compared both with results obtained using standard sentiment analysis techniques and using different state-of-the-art knowledge bases such as Princeton’s WordNet, MIT’s ConceptNet and Microsoft’s Probase. Differently from most currently available opinion mining services, the developed engine does not base its analysis on a limited set of affect words and their co-occurrence frequencies, but rather on common sense concepts and the cognitive and affective valence conveyed by these. This allows the engine to be domain-independent and, hence, to be embedded in any opinion mining system for the development of intelligent applications in multiple fields such as Social Web, HCI and e-health. Looking ahead, the combined novel use of different knowledge bases and of common sense reasoning techniques for opinion mining proposed in this work, will, eventually, pave the way for development of more bio-inspired approaches to the design of natural language processing systems capable of handling knowledge, retrieving it when necessary, making analogies and learning from experience

    Automatic & Semi-Automatic Methods for Supporting Ontology Change

    Get PDF

    Mobile Link Prediction: Automated Creation and Crowd-sourced Validation of Knowledge Graphs

    Full text link
    Building trustworthy knowledge graphs for cyber-physical social systems (CPSS) is a challenge. In particular, current approaches relying on human experts have limited scalability, while automated approaches are often not accountable to users resulting in knowledge graphs of questionable quality. This paper introduces a novel pervasive knowledge graph builder that brings together automation, experts' and crowd-sourced citizens' knowledge. The knowledge graph grows via automated link predictions using genetic programming that are validated by humans for improving transparency and calibrating accuracy. The knowledge graph builder is designed for pervasive devices such as smartphones and preserves privacy by localizing all computations. The accuracy, practicality, and usability of the knowledge graph builder is evaluated in a real-world social experiment that involves a smartphone implementation and a Smart City application scenario. The proposed knowledge graph building methodology outperforms the baseline method in terms of accuracy while demonstrating its efficient calculations on smartphones and the feasibility of the pervasive human supervision process in terms of high interactions throughput. These findings promise new opportunities to crowd-source and operate pervasive reasoning systems for cyber-physical social systems in Smart Cities

    Social Network Data Management

    Get PDF
    With the increasing usage of online social networks and the semantic web's graph structured RDF framework, and the rising adoption of networks in various fields from biology to social science, there is a rapidly growing need for indexing, querying, and analyzing massive graph structured data. Facebook has amassed over 500 million users creating huge volumes of highly connected data. Governments have made RDF datasets containing billions of triples available to the public. In the life sciences, researches have started to connect disparate data sets of research results into one giant network of valuable information. Clearly, networks are becoming increasingly popular and growing rapidly in size, requiring scalable solutions for network data management. This thesis focuses on the following aspects of network data management. We present a hierarchical index structure for external memory storage of network data that aims to maximize data locality. We propose efficient algorithms to answer subgraph matching queries against network databases and discuss effective pruning strategies to improve performance. We show how adaptive cost models can speed up subgraph matching query answering by assigning budgets to index retrieval operations and adjusting the query plan while executing. We develop a cloud oriented social network database, COSI, which handles massive network datasets too large for a single computer by partitioning the data across multiple machines and achieving high performance query answering through asynchronous parallelization and cluster-aware heuristics. Tracking multiple standing queries against a social network database is much faster with our novel multi-view maintenance algorithm, which exploits common substructures between queries. To capture uncertainty inherent in social network querying, we define probabilistic subgraph matching queries over deterministic graph data and propose algorithms to answer them efficiently. Finally, we introduce a general relational machine learning framework and rule-based language, Probabilistic Soft Logic, to learn from and probabilistically reason about social network data and describe applications to information integration and information fusion

    Enhancing web marketing by using ontology

    Get PDF
    The existence of the Web has a major impact on people\u27s life styles. Online shopping, online banking, email, instant messenger services, search engines and bulletin boards have gradually become parts of our daily life. All kinds of information can be found on the Web. Web marketing is one of the ways to make use of online information. By extracting demographic information and interest information from the Web, marketing knowledge can be augmented by applying data mining algorithms. Therefore, this knowledge which connects customers to products can be used for marketing purposes and for targeting existing and potential customers. The Web Marketing Project with Ontology Support has the purpose to find and improve marketing knowledge. In the Web Marketing Project, association rules about marketing knowledge have been derived by applying data mining algorithms to existing Web users\u27 data. An ontology was used as a knowledge backbone to enhance data mining for marketing. The Raising Method was developed by taking advantage of the ontology. Data are preprocessed by Raising before being fed into data mining algorithms. Raising improves the quality of the set of mined association rules by increasing the average support value. Also, new rules have been discovered after applying Raising. This dissertation thoroughly describes the development and analysis of the Raising method. Moreover, a new structure, called Intersection Ontology, is introduced to represent customer groups on demand. Only needed customer nodes are created. Such an ontology is used to simplify the marketing knowledge representation. Finally, some additional ontology usages are mentioned. By integrating an ontology into Web marketing, the marketing process support has been greatly improved
    • …
    corecore