2,447 research outputs found

    Semantic Technologies for Manuscript Descriptions — Concepts and Visions

    Get PDF
    The contribution at hand relates recent developments in the area of the World Wide Web to codicological research. In the last number of years, an informational extension of the internet has been discussed and extensively researched: the Semantic Web. It has already been applied in many areas, including digital information processing of cultural heritage data. The Semantic Web facilitates the organisation and linking of data across websites, according to a given semantic structure. Software can then process this structural and semantic information to extract further knowledge. In the area of codicological research, many institutions are making efforts to improve the online availability of handwritten codices. If these resources could also employ Semantic Web techniques, considerable research potential could be unleashed. However, data acquisition from less structured data sources will be problematic. In particular, data stemming from unstructured sources needs to be made accessible to SemanticWeb tools through information extraction techniques. In the area of museum research, the CIDOC Conceptual Reference Model (CRM) has been widely examined and is being adopted successfully. The CRM translates well to Semantic Web research, and its concentration on contextualization of objects could support approaches in codicological research. Further concepts for the creation and management of bibliographic coherences and structured vocabularies related to the CRM will be considered in this chapter. Finally, a user scenario showing all processing steps in their context will be elaborated on

    Novel Heuristic Recurrent Neural Network Framework to Handle Automatic Telugu Text Categorization from Handwritten Text Image

    Get PDF
    In the near future, the digitization and processing of the current paper documents describe efficient role in the creation of a paperless environment. Deep learning techniques for handwritten recognition have been extensively studied by various researchers. Deep neural networks can be trained quickly thanks to a lot of data and other algorithmic advancements. Various methods for extracting text from handwritten manuscripts have been developed in literature. To extract features from written Telugu Text image having some other neural network approaches like convolution neural network (CNN), recurrent neural networks (RNN), long short-term memory (LSTM). Different deep learning related approaches are widely used to identification of handwritten Telugu Text; various techniques are used in literature for the identification of Telugu Text from documents. For automatic identification of Telugu written script efficiently to eliminate noise and other semantic features present in Telugu Text, in this paper, proposes Novel Heuristic Advanced Neural Network based Telugu Text Categorization Model (NHANNTCM) based on sequence-to-sequence feature extraction procedure. Proposed approach extracts the features using RNN and then represents Telugu Text in sequence-to-sequence format for the identification advanced neural network performs both encoding and decoding to identify and explore visual features from sequence of Telugu Text in input data. The classification accuracy rates for Telugu words, Telugu numerals, Telugu characters, Telugu sentences, and the corresponding Telugu sentences were 99.66%, 93.63%, 91.36%, 99.05%, and 97.73% consequently. Experimental evaluation describe extracted with revealed which are textured i.e. TENG shown considerable operations in applications such as private information protection, security defense, and personal handwriting signature identification

    MicroConceptBERT: concept-relation based document information extraction framework.

    Get PDF
    Extracting information from documents is a crucial task in natural language processing research. Existing information extraction methodologies often focus on specific domains, such as medicine, education or finance, and are limited by language constraints. However, more comprehensive approaches that transcend document types, languages, contexts, and structures would significantly advance the field proposed in recent research. This study addresses this challenge by introducing microConceptBERT: a concept-relations-based framework for document information extraction, which offers flexibility for various document processing tasks while accounting for hierarchical, semantic, and heuristic features. The proposed framework has been applied to a question-answering task on benchmark datasets: SQUAD 2.0 and DOCVQA. Notably, the F1 evaluation metric attains an outperforming 87.01 performance rate on the SQUAD 2.0 dataset compared to baseline models: BERT-base and BERT-large models

    Identifying human phenotype terms in text using a machine learning approach

    Get PDF
    Tese de mestrado, Bioinformática e Biologia Computacional (Bioinformática) Universidade de Lisboa, Faculdade de Ciências, 2017Todos os dias, uma grande quantidade de informação biomédica está a ser criada sob a forma de artigos científicos, livros e imagens. Como a linguagem humana tem uma natureza não-estruturada (texto com baixo nível de organização), torna-se necessário a criação de métodos de extração de informação automáticos para que seja possível converter esta informação de modo a ser legível por uma máquina e para que seja possível automatizar este processo. Os sistemas de extração de informação têm melhorado ao longo dos anos, tornando-se cada vez mais eficazes. Esta informação extraída pode depois ser inserida em bases de dados para que seja facilmente acessível, pesquisável e para que seja possível criar ligações entre diferentes tipos de informação. O Processamento de Linguagem Natural (PLN) é uma área da informática que lida com linguagem humana. O seu objetivo é extrair significado de texto não-estruturado, de forma automática, utilizando um computador. Utiliza um conjunto de técnicas como tokenization, stemming, lemmatization e part-of-speech tagging para desconstruir o texto e torna-lo legível para máquinas. O PLN tem várias aplicações, entre as quais podemos encontrar: coreference resolution, tradução automática, Reconhecimento de Entidades Mencionadas (REM) e part-of-speech tagging. Os métodos de aprendizagem automática têm um papel muito importante na extração de informação, tendo sido desenvolvidos e melhorados ao longo dos anos, tornando-se cada vez mais poderosos. Estes métodos podem ser divididos em dois tipos: aprendizagem não-supervisionada e aprendizagem supervisionada. Os métodos de aprendizagem não-supervisionada como o Clustering, não necessitam de um conjunto de treino anotado, sendo isso vantajoso pois pode ser difícil de encontrar. Estes métodos podem ser usados para encontrar padrões nos dados, o que pode ser útil quando as características dos dados são desconhecidas. Por sua vez, os métodos de aprendizagem supervisionada utilizam um conjunto de treino anotado, que contém exemplos para os dados de input e de output, com o qual é possível criar um modelo capaz de classificar um conjunto de dados não anotado. Alguns dos métodos de aprendizagem supervisionada mais comuns são os Conditional Random Fields (CRFs), Support Vectors Machines (SVMs) e Decision Trees. Os CRFs são utilizados nesta tese e são modelos probabilísticos geralmente usados em sistemas de REM. Estes modelos apresentam vantagens em relação a outros modelos, permitindo relaxar as hipóteses de independência que são postas aos Hidden Markov Models (HMM) e evitar os problemas de bias (preconceito) existentes nos SVMs. O REM é um método que consiste na identificação de entidades em texto não-estruturado. Os sistemas REM podem ser divididos em três vertentes: métodos de aprendizagem automática, métodos baseados em dicionários e métodos baseados em regras escritas. Hoje em dia, a maioria dos sistemas de REM utilizam métodos de aprendizagem automática. As vertentes que utilizam apenas métodos de aprendizagem automática são flexíveis, mas precisam de grandes quantidades de dado, tendo a possibilidade de não produzir resultados precisos. Os métodos baseados em dicionários eliminam a necessidade de grandes quantidades de dados e conseguem obter bons resultados. No entanto, estes métodos são limitativos pois não conseguem identificar entidades que não estão dentro do dicionário. Finalmente, métodos que usam regras escritas podem produzir resultados de alta qualidade. Não tendo tantas limitações como os métodos baseados em dicionários, têm a desvantagem de ser necessário uma grande quantidade de tempo e trabalho manual para obter bons resultados. O objetivo desta tese é o desenvolvimento de um sistema REM, o IHP (Identifying Human Phenotypes) para a identificação automática de entidades representadas na Human Phenotype Ontology (HPO). A HPO é uma ontologia com o objetivo de fornecer um vocabulário standardizado para defeitos fenotípicos que podem ser encontrados em doenças humanas. O IHP utiliza métodos de aprendizagem automática para o processo de identificação de entidades e uma combinação de métodos baseados em dicionários e métodos baseados em regras escritas para o processo de validação das entidades identificadas. O IHP utiliza duas ferramentas de benchmarking específicas para esta ontologia, apresentadas num trabalho anterior (Groza T, 2015): O Gold Standard Corpora (GSC), que consiste num conjunto de abstracts com as respetivas anotações de termos do HPO, e os Test Suites (TS), que consistem num conjunto de testes específicos divididos em categorias diferentes. Estas ferramentas têm o propósito de testar diferentes propriedades dos anotadores. Enquanto que o GSC testa os anotadores de uma forma geral, avaliando a capacidade de identificar entidades em texto livre, os TS são compostos por um conjunto de testes que avaliam as possíveis variações linguísticas que as entidades do HPO podem ter. Groza et al. também apresenta os resultados do anotador BioLark-CR, o qual é utilizado como baseline para os resultados do IHP. O IHP utiliza o IBEnt (Identification of Biological Entities) como o sistema de REM base, tendo sido modificado para aceitar entidades do HPO. Este sistema usa o Stanford CoreNLP em conjunto com CRFs, sob a forma de StanfordNER e CRFSuite, de modo a criar um modelo a partir de um conjunto de treino. Este modelo pode depois ser avaliado por um conjunto de teste. Para a criação de um modelo é necessário selecionar um conjunto de características (features) que se ajuste ao conjunto de dados utilizados. O StanfordNER e o CRFSuite apresentam conjuntos de features diferentes. Para o StanfordNER, uma lista de features existente foi utilizada, aplicando um algoritmo para selecionar as features que trazem maiores benefícios. Para o CRFSuite, foi criado um conjunto de features (linguísticas, morfológicas, ortográficas, léxicas, de contexto e outra) com base em trabalhos prévios na área do REM biomédico. Este conjunto de features foi testado e selecionado manualmente de acordo com o desempenho. Além da utilização das features, um conjunto de regras de pós-processamento foi desenvolvido para pesquisar padrões linguísticos, utilizando também listas de palavras e stop words, com o propósito de remover entidades que tenham sido mal identificadas, identificar entidades que não tenham sido identificadas e combinar entidades adjacentes. Os resultados para o IHP foram obtidos utilizando os classificadores StanfordNER e o CRFSuite. Para o StanfordNER, o IHP atinge um F-measure de 0.63498 no GSC e de 0.86916 nos TS. Para o CRFSuite, atinge um F-measure de 0.64009 no GSC e 0.89556 nos TS. Em relação ao anotador comparativo Bio-LarK CR, estes resultados mostram um aumento de desempenho no GSC, sugerindo que o IHP tem uma maior capacidade do que o BioLarK CR em lidar com situações reais. Apresenta, no entanto, um decréscimo nos TS, tendo uma menor capacidade em lidar com estruturas linguísticas complexas que possam ocorrer. No entanto, apesar de haver um decréscimo nos TS, as estruturas linguísticas avaliadas por estes testes ocorrem naturalmente em texto livre (como os abstracts do GSC), sugerindo que os resultados do GSC sejam mais significativos do que os resultados dos TS. Durante o desenvolvimento da tese, alguns problemas foram identificados no GSC: anotação de entidades superclasse/subclasse, número de vezes que uma entidade é anotada erros comuns. Devido a estas inconsistências encontradas, o IHP tem o potencial de ter um desempenho melhor no GSC. Para testar esta possibilidade, foi efetuado um teste que consiste em remover Falsos Positivos que se encontram tanto nas anotações do GSC como também na base de dados do HPO. Estes Falsos Positivos, estando presentes no GSC e no HPO, provavelmente deveriam ser considerados como bem anotados, mas, no entanto, o GSC não identifica como uma entidade. Estes testes mostram que o IHP tem o potencial de atingir um desempenho de 0.816, que corresponde a um aumento considerável de cerca de 0.18 em relação aos resultados obtidos. Com a análise destas inconsistências encontradas no GSC, uma nova versão, o GSC+, foi criada. GSC+ permite uma anotação dos documentos mais consistente, tentando anotar o máximo número de entidades nos documentos. Em relação ao GSC, ao GSC+ foram adicionadas 881 entidades e foram modificadas 4 entidades. O desempenho do IHP no GSC+ é consideravelmente mais alta do que no GSC, tendo atingindo um valor de F-measure de 0.863. Esta diferença no desempenho é devido ao facto do GSC+ tentar identificar o máximo número de entidades possível. Muitas entidades que eram consideradas como erradas, agora são consideradas corretas.Named-Entity Recognition (NER) is an important Natural Language Processing task that can be used in Information Extraction systems to automatically identify and extract entities in unstructured text. NER is commonly used to identify biological entities such as proteins, genes and chemical compounds found in scientific articles. The Human Phenotype Ontology (HPO) is an ontology that provides a standardized vocabulary for phenotypic abnormalities found in human diseases. This article presents the Identifying Human Phenotypes (IHP) system, tuned to recognize HPO entities in unstructured text. IHP uses IBEnt (Identification of Biological Entities) as the base NER system. It uses Stanford CoreNLP for text processing and applies Conditional Random Fields (CRFs) for the identification of entities. IHP uses of a rich feature set containing linguistic, orthographic, morphologic, lexical and context features created for the machine learning-based classifier. However, the main novelty of IHP is its validation step based on a set of carefully crafted hand-written rules, such as the negative connotation analysis, that combined with a dictionary are able to filter incorrectly identified entities, find missing entities and combine adjacent entities. The performance of IHP was evaluated using the recently published HPO Gold Standardized Corpora (GSC) and Test Suites (TS), where the system Bio-LarK CR obtained the best F-measure of 0.56 and 0.95 in the GSC and TS, respectively. Using StanfordNER, IHP achieved an F-measure of 0.646 for the GSC and 0.869 for the TS. Using CRFSuite, it achieved an F-measure of 0.648 for the GSC and 0.895 for the TS. Due to inconsistencies found in the GSC, an extended version of the GSC, the GSC+, was created, adding 881 entities and modifying 4 entities. IHP achieved an F-measure of 0.863 on GSC+. Both the GSC+ and the IHP system are publicly available at: https://github.com/lasigeBioTM/IHP

    Proceedings of the 15th Conference on Knowledge Organization WissOrg'17 of theGerman Chapter of the International Society for Knowledge Organization (ISKO),30th November - 1st December 2017, Freie Universität Berlin

    Get PDF
    Wissensorganisation is the name of a series of biennial conferences / workshops with a long tradition, organized by the German chapter of the International Society of Knowledge Organization (ISKO). The 15th conference in this series, held at Freie Universität Berlin, focused on knowledge organization for the digital humanities. Structuring, and interacting with, large data collections has become a major issue in the digital humanities. In these proceedings, various aspects of knowledge organization in the digital humanities are discussed, and the authors of the papers show how projects in the digital humanities deal with knowledge organization.Wissensorganisation ist der Name einer Konferenzreihe mit einer langjährigen Tradition, die von der Deutschen Sektion der International Society of Knowledge Organization (ISKO) organisiert wird. Die 15. Konferenz dieser Reihe, die an der Freien Universität Berlin stattfand, hatte ihren Schwerpunkt im Bereich Wissensorganisation und Digital Humanities. Die Strukturierung von und die Interaktion mit großen Datenmengen ist ein zentrales Thema in den Digital Humanities. In diesem Konferenzband werden verschiedene Aspekte der Wissensorganisation in den Digital Humanities diskutiert, und die Autoren der einzelnen Beiträge zeigen, wie die Digital Humanities mit Wissensorganisation umgehen

    Assessing and Improving Domain Knowledge Representation in DBpedia

    Get PDF
    With the development of knowledge graphs and the billions of triples generated on the Linked Data cloud, it is paramount to ensure the quality of data. In this work, we focus on one of the central hubs of the Linked Data cloud, DBpedia. In particular, we assess the quality of DBpedia for domain knowledge representation. Our results show that DBpedia has still much room for improvement in this regard, especially for the description of concepts and their linkage with the DBpedia ontology. Based on this analysis, we leverage open relation extraction and the information already available on DBpedia to partly correct the issue, by providing novel relations extracted from Wikipedia abstracts and discovering entity types using the dbo:type predicate. Our results show that open relation extraction can indeed help enrich domain knowledge representation in DBpedia
    corecore