4,655 research outputs found

    Conceptual spatial representations for indoor mobile robots

    Get PDF
    We present an approach for creating conceptual representations of human-made indoor environments using mobile robots. The concepts refer to spatial and functional properties of typical indoor environments. Following findings in cognitive psychology, our model is composed of layers representing maps at different levels of abstraction. The complete system is integrated in a mobile robot endowed with laser and vision sensors for place and object recognition. The system also incorporates a linguistic framework that actively supports the map acquisition process, and which is used for situated dialogue. Finally, we discuss the capabilities of the integrated system

    A Model-Driven Engineering Approach for ROS using Ontological Semantics

    Full text link
    This paper presents a novel ontology-driven software engineering approach for the development of industrial robotics control software. It introduces the ReApp architecture that synthesizes model-driven engineering with semantic technologies to facilitate the development and reuse of ROS-based components and applications. In ReApp, we show how different ontological classification systems for hardware, software, and capabilities help developers in discovering suitable software components for their tasks and in applying them correctly. The proposed model-driven tooling enables developers to work at higher abstraction levels and fosters automatic code generation. It is underpinned by ontologies to minimize discontinuities in the development workflow, with an integrated development environment presenting a seamless interface to the user. First results show the viability and synergy of the selected approach when searching for or developing software with reuse in mind.Comment: Presented at DSLRob 2015 (arXiv:1601.00877), Stefan Zander, Georg Heppner, Georg Neugschwandtner, Ramez Awad, Marc Essinger and Nadia Ahmed: A Model-Driven Engineering Approach for ROS using Ontological Semantic

    Improvement of the sensory and autonomous capability of robots through olfaction: the IRO Project

    Get PDF
    Proyecto de Excelencia Junta de Andalucía TEP2012-530Olfaction is a valuable source of information about the environment that has not been su ciently exploited in mobile robotics yet. Certainly, odor information can contribute to other sensing modalities, e.g. vision, to successfully accomplish high-level robot activities, such as task planning or execution in human environments. This paper describes the developments carried out in the scope of the IRO project, which aims at making progress in this direction by investigating mechanisms that exploit odor information (usually coming in the form of the type of volatile and its concentration) in problems like object recognition and scene-activity understanding. A distinctive aspect of this research is the special attention paid to the role of semantics within the robot perception and decisionmaking processes. The results of the IRO project have improved the robot capabilities in terms of efciency, autonomy and usefulness.Universidad de Málaga. Campus de Excelencia Internacional Andalucía Tec

    SWARMs Ontology: A Common Information Model for the Cooperation of Underwater Robots

    Get PDF
    In order to facilitate cooperation between underwater robots, it is a must for robots to exchange information with unambiguous meaning. However, heterogeneity, existing in information pertaining to different robots, is a major obstruction. Therefore, this paper presents a networked ontology, named the Smart and Networking Underwater Robots in Cooperation Meshes (SWARMs) ontology, to address information heterogeneity and enable robots to have the same understanding of exchanged information. The SWARMs ontology uses a core ontology to interrelate a set of domain-specific ontologies, including the mission and planning, the robotic vehicle, the communication and networking, and the environment recognition and sensing ontology. In addition, the SWARMs ontology utilizes ontology constructs defined in the PR-OWL ontology to annotate context uncertainty based on the Multi-Entity Bayesian Network (MEBN) theory. Thus, the SWARMs ontology can provide both a formal specification for information that is necessarily exchanged between robots and a command and control entity, and also support for uncertainty reasoning. A scenario on chemical pollution monitoring is described and used to showcase how the SWARMs ontology can be instantiated, be extended, represent context uncertainty, and support uncertainty reasoning.Eurpean Commission, H2020, 66210

    A review and comparison of ontology-based approaches to robot autonomy

    Get PDF
    Within the next decades, robots will need to be able to execute a large variety of tasks autonomously in a large variety of environments. To relax the resulting programming effort, a knowledge-enabled approach to robot programming can be adopted to organize information in re-usable knowledge pieces. However, for the ease of reuse, there needs to be an agreement on the meaning of terms. A common approach is to represent these terms using ontology languages that conceptualize the respective domain. In this work, we will review projects that use ontologies to support robot autonomy. We will systematically search for projects that fulfill a set of inclusion criteria and compare them with each other with respect to the scope of their ontology, what types of cognitive capabilities are supported by the use of ontologies, and which is their application domain.Peer ReviewedPostprint (author's final draft

    A knowledge-based approach towards human activity recognition in smart environments

    Get PDF
    For many years it is known that the population of older persons is on the rise. A recent report estimates that globally, the share of the population aged 65 years or over is expected to increase from 9.3 percent in 2020 to around 16.0 percent in 2050 [1]. This point has been one of the main sources of motivation for active research in the domain of human activity recognition in smart-homes. The ability to perform ADL without assistance from other people can be considered as a reference for the estimation of the independent living level of the older person. Conventionally, this has been assessed by health-care domain experts via a qualitative evaluation of the ADL. Since this evaluation is qualitative, it can vary based on the person being monitored and the caregiver\u2019s experience. A significant amount of research work is implicitly or explicitly aimed at augmenting the health-care domain expert\u2019s qualitative evaluation with quantitative data or knowledge obtained from HAR. From a medical perspective, there is a lack of evidence about the technology readiness level of smart home architectures supporting older persons by recognizing ADL [2]. We hypothesize that this may be due to a lack of effective collaboration between smart-home researchers/developers and health-care domain experts, especially when considering HAR. We foresee an increase in HAR systems being developed in close collaboration with caregivers and geriatricians to support their qualitative evaluation of ADL with explainable quantitative outcomes of the HAR systems. This has been a motivation for the work in this thesis. The recognition of human activities \u2013 in particular ADL \u2013 may not only be limited to support the health and well-being of older people. It can be relevant to home users in general. For instance, HAR could support digital assistants or companion robots to provide contextually relevant and proactive support to the home users, whether young adults or old. This has also been a motivation for the work in this thesis. Given our motivations, namely, (i) facilitation of iterative development and ease in collaboration between HAR system researchers/developers and health-care domain experts in ADL, and (ii) robust HAR that can support digital assistants or companion robots. There is a need for the development of a HAR framework that at its core is modular and flexible to facilitate an iterative development process [3], which is an integral part of collaborative work that involves develop-test-improve phases. At the same time, the framework should be intelligible for the sake of enriched collaboration with health-care domain experts. Furthermore, it should be scalable, online, and accurate for having robust HAR, which can enable many smart-home applications. The goal of this thesis is to design and evaluate such a framework. This thesis contributes to the domain of HAR in smart-homes. Particularly the contribution can be divided into three parts. The first contribution is Arianna+, a framework to develop networks of ontologies - for knowledge representation and reasoning - that enables smart homes to perform human activity recognition online. The second contribution is OWLOOP, an API that supports the development of HAR system architectures based on Arianna+. It enables the usage of Ontology Web Language (OWL) by the means of Object-Oriented Programming (OOP). The third contribution is the evaluation and exploitation of Arianna+ using OWLOOP API. The exploitation of Arianna+ using OWLOOP API has resulted in four HAR system implementations. The evaluations and results of these HAR systems emphasize the novelty of Arianna+

    CINet: A Learning Based Approach to Incremental Context Modeling in Robots

    Get PDF
    There have been several attempts at modeling context in robots. However, either these attempts assume a fixed number of contexts or use a rule-based approach to determine when to increment the number of contexts. In this paper, we pose the task of when to increment as a learning problem, which we solve using a Recurrent Neural Network. We show that the network successfully (with 98\% testing accuracy) learns to predict when to increment, and demonstrate, in a scene modeling problem (where the correct number of contexts is not known), that the robot increments the number of contexts in an expected manner (i.e., the entropy of the system is reduced). We also present how the incremental model can be used for various scene reasoning tasks.Comment: The first two authors have contributed equally, 6 pages, 8 figures, International Conference on Intelligent Robots (IROS 2018

    Context classification for service robots

    Get PDF
    This dissertation presents a solution for environment sensing using sensor fusion techniques and a context/environment classification of the surroundings in a service robot, so it could change his behavior according to the different rea-soning outputs. As an example, if a robot knows he is outdoors, in a field environment, there can be a sandy ground, in which it should slow down. Contrariwise in indoor environments, that situation is statistically unlikely to happen (sandy ground). This simple assumption denotes the importance of context-aware in automated guided vehicles
    corecore