28,233 research outputs found

    Ontology of core data mining entities

    Get PDF
    In this article, we present OntoDM-core, an ontology of core data mining entities. OntoDM-core defines themost essential datamining entities in a three-layered ontological structure comprising of a specification, an implementation and an application layer. It provides a representational framework for the description of mining structured data, and in addition provides taxonomies of datasets, data mining tasks, generalizations, data mining algorithms and constraints, based on the type of data. OntoDM-core is designed to support a wide range of applications/use cases, such as semantic annotation of data mining algorithms, datasets and results; annotation of QSAR studies in the context of drug discovery investigations; and disambiguation of terms in text mining. The ontology has been thoroughly assessed following the practices in ontology engineering, is fully interoperable with many domain resources and is easy to extend

    Ontology-based knowledge representation of experiment metadata in biological data mining

    Get PDF
    According to the PubMed resource from the U.S. National Library of Medicine, over 750,000 scientific articles have been published in the ~5000 biomedical journals worldwide in the year 2007 alone. The vast majority of these publications include results from hypothesis-driven experimentation in overlapping biomedical research domains. Unfortunately, the sheer volume of information being generated by the biomedical research enterprise has made it virtually impossible for investigators to stay aware of the latest findings in their domain of interest, let alone to be able to assimilate and mine data from related investigations for purposes of meta-analysis. While computers have the potential for assisting investigators in the extraction, management and analysis of these data, information contained in the traditional journal publication is still largely unstructured, free-text descriptions of study design, experimental application and results interpretation, making it difficult for computers to gain access to the content of what is being conveyed without significant manual intervention. In order to circumvent these roadblocks and make the most of the output from the biomedical research enterprise, a variety of related standards in knowledge representation are being developed, proposed and adopted in the biomedical community. In this chapter, we will explore the current status of efforts to develop minimum information standards for the representation of a biomedical experiment, ontologies composed of shared vocabularies assembled into subsumption hierarchical structures, and extensible relational data models that link the information components together in a machine-readable and human-useable framework for data mining purposes

    A core ontology for business process analysis

    Get PDF
    Business Process Management (BPM) aims at supporting the whole life-cycle necessary to deploy and maintain business processes in organisations. An important step of the BPM life-cycle is the analysis of the processes deployed in companies. However, the degree of automation currently achieved cannot support the level of adaptation required by businesses. Initial steps have been performed towards including some sort of automated reasoning within Business Process Analysis (BPA) but this is typically limited to using taxonomies. We present a core ontology aimed at enhancing the state of the art in BPA. The ontology builds upon a Time Ontology and is structured around the process, resource, and object perspectives as typically adopted when analysing business processes. The ontology has been extended and validated by means of an Events Ontology and an Events Analysis Ontology aimed at capturing the audit trails generated by Process-Aware Information Systems and deriving additional knowledge

    Towards automatic classification within the ChEBI ontology

    Get PDF
    *Background*
Appearing in a wide variety of contexts, biochemical 'small molecules' are a core element of biomedical data. Chemical ontologies, which provide stable identifiers and a shared vocabulary for use in referring to such biochemical small molecules, are crucial to enable the interoperation of such data. One such chemical ontology is ChEBI (Chemical Entities of Biological Interest), a candidate member ontology of the OBO Foundry. ChEBI is a publicly available, manually annotated database of chemical entities and contains around 18000 annotated entities as of the last release (May 2009). ChEBI provides stable unique identifiers for chemical entities; a controlled vocabulary in the form of recommended names (which are unique and unambiguous), common synonyms, and systematic chemical names; cross-references to other databases; and a structural and role-based classification within the ontology. ChEBI is widely used for annotation of chemicals within biological databases, text-mining, and data integration. ChEBI can be accessed online at "http://www.ebi.ac.uk/chebi/":http://www.ebi.ac.uk/chebi/ and the full dataset is available for download in various formats including SDF and OBO.

*Automated Classification*
The selection of chemical entities for inclusion in the ChEBI database is user-driven. As the use of ChEBI has grown, so too has the backlog of user-requested entries. Inevitably, the annotation backlog creates a bottleneck, and to speed up the annotation process, ChEBI has recently released a submission tool which allows community submissions of chemical entities, groups, and classes. However, classification of chemical entities within the ontology is a difficult and niche activity, and it is unlikely that the community as a whole will be able or willing to correctly and consistently classify each submitted entity, creating required classes where they are missing. As a result, it is likely that while the size of the database grows, the ontological classification will become less sophisticated, unless the classification of new entities is assisted computationally. In addition, the ChEBI database is expecting substantial size growth in the next year, so automatic classification, which has up till now not been possible, is urgently required. Automatic classification would also enable the ChEBI ontology classes to be applied to other compound databases such as PubChem. 

*Description Logic Reasoning*
Description logic based reasoning technology is a prime candidate for development of such an automatic classification system as it allows the rules of the classification system to be encoded within the knowledgebase. Already at 18000 entities, ChEBI is a fair size for a real-world application of description logic reasoning technology, and as the ontology is enhanced with a richer density of asserted relationships, the classification will become more complex and challenging. We have successfully tested a description logic-based classification of chemical entities based on specified structural properties using the hypertableaux-based HermiT reasoner, and found it to be sufficiently efficient to be feasible for use in a production environment on a database of the size that ChEBI is now. However, much work still remains to enrich the ChEBI knowledgebase itself with the properties needed to provide the formal class definitions for use in the automated classification, and to assess the efficiency of the available description logic reasoning technology on a database the size of ChEBI's forecast future growth.

*Acknowledgements*
ChEBI is funded by the European Commission under SLING, grant agreement number 226073 (Integrating Activity) within Research Infrastructures of the FP7 Capacities Specific Programme, and by the BBSRC, grant agreement number BB/G022747/1 within the “Bioinformatics and biological resources” fund

    Infectious Disease Ontology

    Get PDF
    Technological developments have resulted in tremendous increases in the volume and diversity of the data and information that must be processed in the course of biomedical and clinical research and practice. Researchers are at the same time under ever greater pressure to share data and to take steps to ensure that data resources are interoperable. The use of ontologies to annotate data has proven successful in supporting these goals and in providing new possibilities for the automated processing of data and information. In this chapter, we describe different types of vocabulary resources and emphasize those features of formal ontologies that make them most useful for computational applications. We describe current uses of ontologies and discuss future goals for ontology-based computing, focusing on its use in the field of infectious diseases. We review the largest and most widely used vocabulary resources relevant to the study of infectious diseases and conclude with a description of the Infectious Disease Ontology (IDO) suite of interoperable ontology modules that together cover the entire infectious disease domain

    The Infectious Disease Ontology in the Age of COVID-19

    Get PDF
    The Infectious Disease Ontology (IDO) is a suite of interoperable ontology modules that aims to provide coverage of all aspects of the infectious disease domain, including biomedical research, clinical care, and public health. IDO Core is designed to be a disease and pathogen neutral ontology, covering just those types of entities and relations that are relevant to infectious diseases generally. IDO Core is then extended by a collection of ontology modules focusing on specific diseases and pathogens. In this paper we present applications of IDO Core within various areas of infectious disease research, together with an overview of all IDO extension ontologies and the methodology on the basis of which they are built. We also survey recent developments involving IDO, including the creation of IDO Virus; the Coronaviruses Infectious Disease Ontology (CIDO); and an extension of CIDO focused on COVID-19 (IDO-CovID-19).We also discuss how these ontologies might assist in information-driven efforts to deal with the ongoing COVID-19 pandemic, to accelerate data discovery in the early stages of future pandemics, and to promote reproducibility of infectious disease research

    Moving Object Trajectories Meta-Model And Spatio-Temporal Queries

    Full text link
    In this paper, a general moving object trajectories framework is put forward to allow independent applications processing trajectories data benefit from a high level of interoperability, information sharing as well as an efficient answer for a wide range of complex trajectory queries. Our proposed meta-model is based on ontology and event approach, incorporates existing presentations of trajectory and integrates new patterns like space-time path to describe activities in geographical space-time. We introduce recursive Region of Interest concepts and deal mobile objects trajectories with diverse spatio-temporal sampling protocols and different sensors available that traditional data model alone are incapable for this purpose.Comment: International Journal of Database Management Systems (IJDMS) Vol.4, No.2, April 201
    corecore