3,738 research outputs found

    Multi-Paradigm Reasoning for Access to Heterogeneous GIS

    Get PDF
    Accessing and querying geographical data in a uniform way has become easier in recent years. Emerging standards like WFS turn the web into a geospatial web services enabled place. Mediation architectures like VirGIS overcome syntactical and semantical heterogeneity between several distributed sources. On mobile devices, however, this kind of solution is not suitable, due to limitations, mostly regarding bandwidth, computation power, and available storage space. The aim of this paper is to present a solution for providing powerful reasoning mechanisms accessible from mobile applications and involving data from several heterogeneous sources. By adapting contents to time and location, mobile web information systems can not only increase the value and suitability of the service itself, but can substantially reduce the amount of data delivered to users. Because many problems pertain to infrastructures and transportation in general and to way finding in particular, one cornerstone of the architecture is higher level reasoning on graph networks with the Multi-Paradigm Location Language MPLL. A mediation architecture is used as a “graph provider” in order to transfer the load of computation to the best suited component – graph construction and transformation for example being heavy on resources. Reasoning in general can be conducted either near the “source” or near the end user, depending on the specific use case. The concepts underlying the proposal described in this paper are illustrated by a typical and concrete scenario for web applications

    Commit-Time Requirements for an Ontology Server

    Get PDF
    An ontology is recognized as the solution for the integration of information systems. The environment of interoperation may involve many players who have agreed to commit to the ontology in order to maintain their system of speech acts and institutional facts in conformance with the coordinated system. When this interoperating community is established, it can generate a large number of institutional facts due to different range of players who can request different facets of information. In this light, however, how those players commit to ontology is still unclear. This paper discusses what sort of requirements that we need to assist how the players commit to the ontology. The approach of this paper is theoretical which is based on the literature of the concepts of speech acts and institutional facts and a case study of the Olympic games. As a result, we have defined several important commit-time requirements to explain situations of players committing to ontology in the context of ontology-based interoperation of information systems

    Adding semantic annotations into (Geospatial) RESTful services

    Get PDF
    In this paper the authors present an approach for the semantic annotation of RESTful services in the geospatial domain. Their approach automates some stages of the annotation process, by using a combination of resources and services: a cross-domain knowledge base like DBpedia, two domain ontologies like GeoNames and the WGS84 vocabulary, and suggestion and synonym services. The authors’ approach has been successfully evaluated with a set of geospatial RESTful services obtained from ProgrammableWeb.com, where geospatial services account for a third of the total amount of services available in this registry

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Semantic Matchmaking as Non-Monotonic Reasoning: A Description Logic Approach

    Full text link
    Matchmaking arises when supply and demand meet in an electronic marketplace, or when agents search for a web service to perform some task, or even when recruiting agencies match curricula and job profiles. In such open environments, the objective of a matchmaking process is to discover best available offers to a given request. We address the problem of matchmaking from a knowledge representation perspective, with a formalization based on Description Logics. We devise Concept Abduction and Concept Contraction as non-monotonic inferences in Description Logics suitable for modeling matchmaking in a logical framework, and prove some related complexity results. We also present reasonable algorithms for semantic matchmaking based on the devised inferences, and prove that they obey to some commonsense properties. Finally, we report on the implementation of the proposed matchmaking framework, which has been used both as a mediator in e-marketplaces and for semantic web services discovery

    Innovative interventions in support of innovation networks. A complex system perspective to public innovation policy and private technology brokering

    Get PDF
    The linear model of innovation has been superseded by a variety of theoretical models that view the innovation process as systemic, complex, multi-level, multi-temporal, involving a plurality of heterogeneous economic agents. Accordingly, the emphasis of the policy discourse has shifted over time. It has gone from a focus on direct public funding of basic research as an engine of innovation, to the creation of markets for knowledge goods, to, eventually, the acknowledgement that knowledge transfer very often requires direct interactions among innovating actors. In most cases, these interventions attempt to facilitate the match between “demand” and “supply” of the knowledge needed to innovate. A complexity perspective calls for a different framing, one focused on the fostering of process characterized by multiple agency levels, multiple temporal scales, ontological uncertainty and emergent outcomes. The article explores what it means to design interventions in support of innovation processes inspired by a complex systems perspective. It does so by analyzing two different examples of coordinated interventions: an innovative public policy funding networks of innovating firms, and a private initiative supporting innovation in the mechanical engineering industry thanks to the set up of a technology broker. Relying on two unique datasets recording the interactions of the various organizations involved in these interventions, the article combines social network analysis and qualitative research in order to investigate the dynamics of the networks and the roles and actions of specific actors in fostering innovation processes. Building upon this comparative analysis, some general implications for the design of coordinated interventions supporting innovation in a complexity perspective are derived.Innovation policy; local development policies; regional development policies; evaluation management

    Enabling long-term oceanographic research : changing data practices, information management strategies and informatics

    Get PDF
    Author Posting. © Elsevier B.V., 2008. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Deep Sea Research Part II: Topical Studies in Oceanography 55 (2008): 2132-2142, doi:10.1016/j.dsr2.2008.05.009.Interdisciplinary global ocean science requires new ways of thinking about data and data management. With new data policies and growing technological capabilities, datasets of increasing variety and complexity are being made available digitally and data management is coming to be recognized as an integral part of scientific research. To meet the changing expectations of scientists collecting data and of data reuse by others, collaborative strategies involving diverse teams of information professionals are developing. These changes are stimulating the growth of information infrastructures that support multi-scale sampling, data repositories, and data integration. Two examples of oceanographic projects incorporating data management in partnership with science programs are discussed: the Palmer Station Long-Term Ecological Research program (Palmer LTER) and the United States Joint Global Ocean Flux Study (US JGOFS). Lessons learned from a decade of data management within these communities provide an experience base from which to develop information management strategies – short-term and long-term. Ocean Informatics provides one example of a conceptual framework for managing the complexities inherent to sharing oceanographic data. Elements are introduced that address the economies-of-scale and the complexities-of-scale pertinent to a broader vision of information management and scientific research.Support is provided by NSF OPP-0217282, OCE-0405069, HSD-0433369 and Scripps Institution of Oceanography (K.S.Baker) and by NSF OCE-8814310, OCE-0097291, OCE- 0510046 and OCE-0646353 (C.Chandler)

    Building Blocks for IoT Analytics Internet-of-Things Analytics

    Get PDF
    Internet-of-Things (IoT) Analytics are an integral element of most IoT applications, as it provides the means to extract knowledge, drive actuation services and optimize decision making. IoT analytics will be a major contributor to IoT business value in the coming years, as it will enable organizations to process and fully leverage large amounts of IoT data, which are nowadays largely underutilized. The Building Blocks of IoT Analytics is devoted to the presentation the main technology building blocks that comprise advanced IoT analytics systems. It introduces IoT analytics as a special case of BigData analytics and accordingly presents leading edge technologies that can be deployed in order to successfully confront the main challenges of IoT analytics applications. Special emphasis is paid in the presentation of technologies for IoT streaming and semantic interoperability across diverse IoT streams. Furthermore, the role of cloud computing and BigData technologies in IoT analytics are presented, along with practical tools for implementing, deploying and operating non-trivial IoT applications. Along with the main building blocks of IoT analytics systems and applications, the book presents a series of practical applications, which illustrate the use of these technologies in the scope of pragmatic applications. Technical topics discussed in the book include: Cloud Computing and BigData for IoT analyticsSearching the Internet of ThingsDevelopment Tools for IoT Analytics ApplicationsIoT Analytics-as-a-ServiceSemantic Modelling and Reasoning for IoT AnalyticsIoT analytics for Smart BuildingsIoT analytics for Smart CitiesOperationalization of IoT analyticsEthical aspects of IoT analyticsThis book contains both research oriented and applied articles on IoT analytics, including several articles reflecting work undertaken in the scope of recent European Commission funded projects in the scope of the FP7 and H2020 programmes. These articles present results of these projects on IoT analytics platforms and applications. Even though several articles have been contributed by different authors, they are structured in a well thought order that facilitates the reader either to follow the evolution of the book or to focus on specific topics depending on his/her background and interest in IoT and IoT analytics technologies. The compilation of these articles in this edited volume has been largely motivated by the close collaboration of the co-authors in the scope of working groups and IoT events organized by the Internet-of-Things Research Cluster (IERC), which is currently a part of EU's Alliance for Internet of Things Innovation (AIOTI)

    Proceedings of the 2004 ONR Decision-Support Workshop Series: Interoperability

    Get PDF
    In August of 1998 the Collaborative Agent Design Research Center (CADRC) of the California Polytechnic State University in San Luis Obispo (Cal Poly), approached Dr. Phillip Abraham of the Office of Naval Research (ONR) with the proposal for an annual workshop focusing on emerging concepts in decision-support systems for military applications. The proposal was considered timely by the ONR Logistics Program Office for at least two reasons. First, rapid advances in information systems technology over the past decade had produced distributed collaborative computer-assistance capabilities with profound potential for providing meaningful support to military decision makers. Indeed, some systems based on these new capabilities such as the Integrated Marine Multi-Agent Command and Control System (IMMACCS) and the Integrated Computerized Deployment System (ICODES) had already reached the field-testing and final product stages, respectively. Second, over the past two decades the US Navy and Marine Corps had been increasingly challenged by missions demanding the rapid deployment of forces into hostile or devastate dterritories with minimum or non-existent indigenous support capabilities. Under these conditions Marine Corps forces had to rely mostly, if not entirely, on sea-based support and sustainment operations. Particularly today, operational strategies such as Operational Maneuver From The Sea (OMFTS) and Sea To Objective Maneuver (STOM) are very much in need of intelligent, near real-time and adaptive decision-support tools to assist military commanders and their staff under conditions of rapid change and overwhelming data loads. In the light of these developments the Logistics Program Office of ONR considered it timely to provide an annual forum for the interchange of ideas, needs and concepts that would address the decision-support requirements and opportunities in combined Navy and Marine Corps sea-based warfare and humanitarian relief operations. The first ONR Workshop was held April 20-22, 1999 at the Embassy Suites Hotel in San Luis Obispo, California. It focused on advances in technology with particular emphasis on an emerging family of powerful computer-based tools, and concluded that the most able members of this family of tools appear to be computer-based agents that are capable of communicating within a virtual environment of the real world. From 2001 onward the venue of the Workshop moved from the West Coast to Washington, and in 2003 the sponsorship was taken over by ONR’s Littoral Combat/Power Projection (FNC) Program Office (Program Manager: Mr. Barry Blumenthal). Themes and keynote speakers of past Workshops have included: 1999: ‘Collaborative Decision Making Tools’ Vadm Jerry Tuttle (USN Ret.); LtGen Paul Van Riper (USMC Ret.);Radm Leland Kollmorgen (USN Ret.); and, Dr. Gary Klein (KleinAssociates) 2000: ‘The Human-Computer Partnership in Decision-Support’ Dr. Ronald DeMarco (Associate Technical Director, ONR); Radm CharlesMunns; Col Robert Schmidle; and, Col Ray Cole (USMC Ret.) 2001: ‘Continuing the Revolution in Military Affairs’ Mr. Andrew Marshall (Director, Office of Net Assessment, OSD); and,Radm Jay M. Cohen (Chief of Naval Research, ONR) 2002: ‘Transformation ... ’ Vadm Jerry Tuttle (USN Ret.); and, Steve Cooper (CIO, Office ofHomeland Security) 2003: ‘Developing the New Infostructure’ Richard P. Lee (Assistant Deputy Under Secretary, OSD); and, MichaelO’Neil (Boeing) 2004: ‘Interoperability’ MajGen Bradley M. Lott (USMC), Deputy Commanding General, Marine Corps Combat Development Command; Donald Diggs, Director, C2 Policy, OASD (NII
    • …
    corecore