1,766 research outputs found

    Creating hospital-specific customized clinical pathways by applying semantic reasoning to clinical data

    Get PDF
    AbstractObjectiveClinical pathways (CPs) are widely studied methods to standardize clinical intervention and improve medical quality. However, standard care plans defined in current CPs are too general to execute in a practical healthcare environment. The purpose of this study was to create hospital-specific personalized CPs by explicitly expressing and replenishing the general knowledge of CPs by applying semantic analysis and reasoning to historical clinical data.MethodsA semantic data model was constructed to semantically store clinical data. After querying semantic clinical data, treatment procedures were extracted. Four properties were self-defined for local ontology construction and semantic transformation, and three Jena rules were proposed to achieve error correction and pathway order recognition. Semantic reasoning was utilized to establish the relationship between data orders and pathway orders.ResultsA clinical pathway for deviated nasal septum was used as an example to illustrate how to combine standard care plans and practical treatment procedures. A group of 224 patients with 11,473 orders was transformed to a semantic data model, which was stored in RDF format. Long term order processing and error correction made the treatment procedures more consistent with clinical practice. The percentage of each pathway order with different probabilities was calculated to declare the commonality between the standard care plans and practical treatment procedures. Detailed treatment procedures with pathway orders, deduced pathway orders, and orders with probability greater than 80% were provided to efficiently customize the CPs.ConclusionsThis study contributes to the practical application of pathway specifications recommended by the Ministry of Health of China and provides a generic framework for the hospital-specific customization of standard care plans defined by CPs or clinical guidelines

    A Query Integrator and Manager for the Query Web

    Get PDF
    We introduce two concepts: the Query Web as a layer of interconnected queries over the document web and the semantic web, and a Query Web Integrator and Manager (QI) that enables the Query Web to evolve. QI permits users to write, save and reuse queries over any web accessible source, including other queries saved in other installations of QI. The saved queries may be in any language (e.g. SPARQL, XQuery); the only condition for interconnection is that the queries return their results in some form of XML. This condition allows queries to chain off each other, and to be written in whatever language is appropriate for the task. We illustrate the potential use of QI for several biomedical use cases, including ontology view generation using a combination of graph-based and logical approaches, value set generation for clinical data management, image annotation using terminology obtained from an ontology web service, ontology-driven brain imaging data integration, small-scale clinical data integration, and wider-scale clinical data integration. Such use cases illustrate the current range of applications of QI and lead us to speculate about the potential evolution from smaller groups of interconnected queries into a larger query network that layers over the document and semantic web. The resulting Query Web could greatly aid researchers and others who now have to manually navigate through multiple information sources in order to answer specific questions

    Managing Water Network using GIS

    Get PDF
    The purpose and the goal of the paper are to introduce a framework based on onto Geographical information systems (GIS) to integrate geographic information of Urban areas taking Khartoum State as an example. One of the main characteristics of such a framework is to support the information integration and data exchange between facilities using the base maps to solve the problem of distributing water networks. Entities in the Khartoum State (KS) infrastructure link information sources and lead to integration and exchange of associated information. The Methodology used is to study the existing urban systems specially water network using Geodatabase concept which are analyzed by observing and comparing the related earlier work using different criteria. Ā  The Geodatabase of the system was defined , designed and build ArcGISĀ  software. An object oriented geodatabase was created using GIS Software ,then theĀ  information was gathered from Water, Sewage, Transportation Corporations in Khartoum States. The tools and software used are the Style Studio 2009 XML. Enterprise Suite Editor for driving KS Infrastructure geodatabase and KS Digital Base map was obtained from Khartoum State Surveying Corporation for Khartoum city center. Visual Basic for Application (VBA) was used to develop the Search Engine program. The main result obtained by the research is the development of a framework based on Geodatabase concept for the integration of geographic information of Khartoum State infrastructure network facilities. Ā  The geodatabase of Khartoum State base map and facilities networks were completed by creating Multitask object oriented geodatabase using ArCatalog. A search engine code was written and tested ninety presents successful. The integration of information was available to exchange information between different Corporations to solve any problem that may damage the network facilities and to help managing and adding any new services on the site. The paper recommends the Building of multi-user unified geodatabase connected to a wide area network to service the concerned enterprise. Keywords: GIS; Geodatabse , Water Network ,ArcGIS , KS ,GM

    A semantic web framework to integrate cancer omics data with biological knowledge

    Get PDF
    BACKGROUND: The RDF triple provides a simple linguistic means of describing limitless types of information. Triples can be flexibly combined into a unified data source we call a semantic model. Semantic models open new possibilities for the integration of variegated biological data. We use Semantic Web technology to explicate high throughput clinical data in the context of fundamental biological knowledge. We have extended Corvus, a data warehouse which provides a uniform interface to various forms of Omics data, by providing a SPARQL endpoint. With the querying and reasoning tools made possible by the Semantic Web, we were able to explore quantitative semantic models retrieved from Corvus in the light of systematic biological knowledge. RESULTS: For this paper, we merged semantic models containing genomic, transcriptomic and epigenomic data from melanoma samples with two semantic models of functional data - one containing Gene Ontology (GO) data, the other, regulatory networks constructed from transcription factor binding information. These two semantic models were created in an ad hoc manner but support a common interface for integration with the quantitative semantic models. Such combined semantic models allow us to pose significant translational medicine questions. Here, we study the interplay between a cell's molecular state and its response to anti-cancer therapy by exploring the resistance of cancer cells to Decitabine, a demethylating agent. CONCLUSIONS: We were able to generate a testable hypothesis to explain how Decitabine fights cancer - namely, that it targets apoptosis-related gene promoters predominantly in Decitabine-sensitive cell lines, thus conveying its cytotoxic effect by activating the apoptosis pathway. Our research provides a framework whereby similar hypotheses can be developed easily

    PhenDisco: phenotype discovery system for the database of genotypes and phenotypes.

    Get PDF
    The database of genotypes and phenotypes (dbGaP) developed by the National Center for Biotechnology Information (NCBI) is a resource that contains information on various genome-wide association studies (GWAS) and is currently available via NCBI's dbGaP Entrez interface. The database is an important resource, providing GWAS data that can be used for new exploratory research or cross-study validation by authorized users. However, finding studies relevant to a particular phenotype of interest is challenging, as phenotype information is presented in a non-standardized way. To address this issue, we developed PhenDisco (phenotype discoverer), a new information retrieval system for dbGaP. PhenDisco consists of two main components: (1) text processing tools that standardize phenotype variables and study metadata, and (2) information retrieval tools that support queries from users and return ranked results. In a preliminary comparison involving 18 search scenarios, PhenDisco showed promising performance for both unranked and ranked search comparisons with dbGaP's search engine Entrez. The system can be accessed at http://pfindr.net

    Advances in semantic representation for multiscale biosimulation: a case study in merging models

    Get PDF
    As a case-study of biosimulation model integration, we describe our experiences applying the SemSim methodology to integrate independently-developed, multiscale models of cardiac circulation. In particular, we have integrated the CircAdapt model (written by T. Arts for MATLAB) of an adapting vascular segment with a cardiovascular system model (written by M. Neal for JSim). We report on three results from the model integration experience. First, models should be explicit about simulations that occur on different time scales. Second, data structures and naming conventions used to represent model variables may not translate across simulation languages. Finally, identifying the dependencies among model variables is a non-trivial task. We claim that these challenges will appear whenever researchers attempt to integrate models from others, especially when those models are written in a procedural style (using MATLAB, Fortran, etc.) rather than a declarative format (as supported by languages like SBML, CellML or JSimā€™s MML)
    • ā€¦
    corecore