3,103 research outputs found

    An experiment with ontology mapping using concept similarity

    Get PDF
    This paper describes a system for automatically mapping between concepts in different ontologies. The motivation for the research stems from the Diogene project, in which the project's own ontology covering the ICT domain is mapped to external ontologies, in order that their associated content can automatically be included in the Diogene system. An approach involving measuring the similarity of concepts is introduced, in which standard Information Retrieval indexing techniques are applied to concept descriptions. A matrix representing the similarity of concepts in two ontologies is generated, and a mapping is performed based on two parameters: the domain coverage of the ontologies, and their levels of granularity. Finally, some initial experimentation is presented which suggests that our approach meets the project's unique set of requirements

    Crowd-Sourcing Fuzzy and Faceted Classification for Concept Search

    Full text link
    Searching for concepts in science and technology is often a difficult task. To facilitate concept search, different types of human-generated metadata have been created to define the content of scientific and technical disclosures. Classification schemes such as the International Patent Classification (IPC) and MEDLINE's MeSH are structured and controlled, but require trained experts and central management to restrict ambiguity (Mork, 2013). While unstructured tags of folksonomies can be processed to produce a degree of structure (Kalendar, 2010; Karampinas, 2012; Sarasua, 2012; Bragg, 2013) the freedom enjoyed by the crowd typically results in less precision (Stock 2007). Existing classification schemes suffer from inflexibility and ambiguity. Since humans understand language, inference, implication, abstraction and hence concepts better than computers, we propose to harness the collective wisdom of the crowd. To do so, we propose a novel classification scheme that is sufficiently intuitive for the crowd to use, yet powerful enough to facilitate search by analogy, and flexible enough to deal with ambiguity. The system will enhance existing classification information. Linking up with the semantic web and computer intelligence, a Citizen Science effort (Good, 2013) would support innovation by improving the quality of granted patents, reducing duplicitous research, and stimulating problem-oriented solution design. A prototype of our design is in preparation. A crowd-sourced fuzzy and faceted classification scheme will allow for better concept search and improved access to prior art in science and technology

    State of the art document clustering algorithms based on semantic similarity

    Get PDF
    The constant success of the Internet made the number of text documents in electronic forms increases hugely. The techniques to group these documents into meaningful clusters are becoming critical missions. The traditional clustering method was based on statistical features, and the clustering was done using a syntactic notion rather than semantically. However, these techniques resulted in un-similar data gathered in the same group due to polysemy and synonymy problems. The important solution to this issue is to document clustering based on semantic similarity, in which the documents are grouped according to the meaning and not keywords. In this research, eighty papers that use semantic similarity in different fields have been reviewed; forty of them that are using semantic similarity based on document clustering in seven recent years have been selected for a deep study, published between the years 2014 to 2020. A comprehensive literature review for all the selected papers is stated. Detailed research and comparison regarding their clustering algorithms, utilized tools, and methods of evaluation are given. This helps in the implementation and evaluation of the clustering of documents. The exposed research is used in the same direction when preparing the proposed research. Finally, an intensive discussion comparing the works is presented, and the result of our research is shown in figures
    corecore