54,457 research outputs found

    Hybrid Search: Effectively Combining Keywords and Semantic Searches

    Get PDF
    This paper describes hybrid search, a search method supporting both document and knowledge retrieval via the flexible combination of ontologybased search and keyword-based matching. Hybrid search smoothly copes with lack of semantic coverage of document content, which is one of the main limitations of current semantic search methods. In this paper we define hybrid search formally, discuss its compatibility with the current semantic trends and present a reference implementation: K-Search. We then show how the method outperforms both keyword-based search and pure semantic search in terms of precision and recall in a set of experiments performed on a collection of about 18.000 technical documents. Experiments carried out with professional users show that users understand the paradigm and consider it very powerful and reliable. K-Search has been ported to two applications released at Rolls-Royce plc for searching technical documentation about jet engines

    Searching Ontologies Based on Content: Experiments in the Biomedical Domain

    No full text
    As more ontologies become publicly available, finding the "right" ontologies becomes much harder. In this paper, we address the problem of ontology search: finding a collection of ontologies from an ontology repository that are relevant to the user's query. In particular, we look at the case when users search for ontologies relevant to a particular topic (e.g., an ontology about anatomy). Ontologies that are most relevant to such query often do not have the query term in the names of their concepts (e.g., the Foundational Model of Anatomy ontology does not have the term "anatomy" in any of its concepts' names). Thus, we present a new ontology-search technique that helps users in these types of searches. When looking for ontologies on a particular topic (e.g., anatomy), we retrieve from the Web a collection of terms that represent the given domain (e.g., terms such as body, brain, skin, etc. for anatomy). We then use these terms to expand the user query. We evaluate our algorithm on queries for topics in the biomedical domain against a repository of biomedical ontologies. We use the results obtained from experts in the biomedical-ontology domain as the gold standard. Our experiments demonstrate that using our method for query expansion improves retrieval results by a 113%, compared to the tools that search only for the user query terms and consider only class and property names (like Swoogle). We show 43% improvement for the case where not only class and property names but also property values are taken into account

    Issues in the Design of a Pilot Concept-Based Query Interface for the Neuroinformatics Information Framework

    Get PDF
    This paper describes a pilot query interface that has been constructed to help us explore a "concept-based" approach for searching the Neuroscience Information Framework (NIF). The query interface is concept-based in the sense that the search terms submitted through the interface are selected from a standardized vocabulary of terms (concepts) that are structured in the form of an ontology. The NIF contains three primary resources: the NIF Resource Registry, the NIF Document Archive, and the NIF Database Mediator. These NIF resources are very different in their nature and therefore pose challenges when designing a single interface from which searches can be automatically launched against all three resources simultaneously. The paper first discusses briefly several background issues involving the use of standardized biomedical vocabularies in biomedical information retrieval, and then presents a detailed example that illustrates how the pilot concept-based query interface operates. The paper concludes by discussing certain lessons learned in the development of the current version of the interface

    Searching and ranking ontologies on the Semantic Web

    Get PDF
    The number of ontologies available online is increasing constantly. Tools that are capable of searching, retrieving, and ranking ontologies are becoming crucial to facilitate ontology search and reuse. In this document, we describe OntoSearch, which is a tool for capturing and searching ontologies on the Semantic web. We also briefly describe AKTiveRank which is used to rank OWL ontologies based on certain ontology-structure analysis.

    An infrastructure for building semantic web portals

    Get PDF
    In this paper, we present our KMi semantic web portal infrastructure, which supports two important tasks of semantic web portals, namely metadata extraction and data querying. Central to our infrastructure are three components: i) an automated metadata extraction tool, ASDI, which supports the extraction of high quality metadata from heterogeneous sources, ii) an ontology-driven question answering tool, AquaLog, which makes use of the domain specific ontology and the semantic metadata extracted by ASDI to answers questions in natural language format, and iii) a semantic search engine, which enhances traditional text-based searching by making use of the underlying ontologies and the extracted metadata. A semantic web portal application has been built, which illustrates the usage of this infrastructure

    Ontology Construction from Online Ontologies

    No full text
    One of the main hurdles towards a wide endorsement of ontologies is the high cost of constructing them. Reuse of existing ontologies offers a much cheaper alternative than building new ones from scratch, yet tools to support such reuse are still in their infancy. However, more ontologies are becoming available on the web, and online libraries for storing and indexing ontologies are increasing in number and demand. Search engines have also started to appear, to facilitate search and retrieval of online ontologies. This paper presents a fresh view on constructing ontologies automatically, by identifying, ranking, and merging fragments of online ontologies

    Ontology construction from online ontologies

    Get PDF
    One of the main hurdles towards a wide endorsement of ontologies is the high cost of constructing them. Reuse of existing ontologies offers a much cheaper alternative than building new ones from scratch, yet tools to support such reuse are still in their infancy. However, more ontologies are becoming available on the web, and online libraries for storing and indexing ontologies are increasing in number and demand. Search engines have also started to appear, to facilitate search and retrieval of online ontologies. This paper presents a fresh view on constructing ontologies automatically, by identifying, ranking, and merging fragments of online ontologies

    A structured model metametadata technique to enhance semantic searching in metadata repository

    Get PDF
    This paper discusses on a novel technique for semantic searching and retrieval of information about learning materials. A novel structured metametadata model has been created to provide the foundation for a semantic search engine to extract, match and map queries to retrieve relevant results. Metametadata encapsulate metadata instances by using the properties and attributes provided by ontologies rather than describing learning objects. The use of ontological views assists the pedagogical content of metadata extracted from learning objects by using the control vocabularies as identified from the metametadata taxonomy. The use of metametadata (based on the metametadata taxonomy) supported by the ontologies have contributed towards a novel semantic searching mechanism. This research has presented a metametadata model for identifying semantics and describing learning objects in finer-grain detail that allows for intelligent and smart retrieval by automated search and retrieval software
    corecore