20,984 research outputs found

    Efficient Discovery of Ontology Functional Dependencies

    Full text link
    Poor data quality has become a pervasive issue due to the increasing complexity and size of modern datasets. Constraint based data cleaning techniques rely on integrity constraints as a benchmark to identify and correct errors. Data values that do not satisfy the given set of constraints are flagged as dirty, and data updates are made to re-align the data and the constraints. However, many errors often require user input to resolve due to domain expertise defining specific terminology and relationships. For example, in pharmaceuticals, 'Advil' \emph{is-a} brand name for 'ibuprofen' that can be captured in a pharmaceutical ontology. While functional dependencies (FDs) have traditionally been used in existing data cleaning solutions to model syntactic equivalence, they are not able to model broader relationships (e.g., is-a) defined by an ontology. In this paper, we take a first step towards extending the set of data quality constraints used in data cleaning by defining and discovering \emph{Ontology Functional Dependencies} (OFDs). We lay out theoretical and practical foundations for OFDs, including a set of sound and complete axioms, and a linear inference procedure. We then develop effective algorithms for discovering OFDs, and a set of optimizations that efficiently prune the search space. Our experimental evaluation using real data show the scalability and accuracy of our algorithms.Comment: 12 page

    Complexity, BioComplexity, the Connectionist Conjecture and Ontology of Complexity\ud

    Get PDF
    This paper develops and integrates major ideas and concepts on complexity and biocomplexity - the connectionist conjecture, universal ontology of complexity, irreducible complexity of totality & inherent randomness, perpetual evolution of information, emergence of criticality and equivalence of symmetry & complexity. This paper introduces the Connectionist Conjecture which states that the one and only representation of Totality is the connectionist one i.e. in terms of nodes and edges. This paper also introduces an idea of Universal Ontology of Complexity and develops concepts in that direction. The paper also develops ideas and concepts on the perpetual evolution of information, irreducibility and computability of totality, all in the context of the Connectionist Conjecture. The paper indicates that the control and communication are the prime functionals that are responsible for the symmetry and complexity of complex phenomenon. The paper takes the stand that the phenomenon of life (including its evolution) is probably the nearest to what we can describe with the term “complexity”. The paper also assumes that signaling and communication within the living world and of the living world with the environment creates the connectionist structure of the biocomplexity. With life and its evolution as the substrate, the paper develops ideas towards the ontology of complexity. The paper introduces new complexity theoretic interpretations of fundamental biomolecular parameters. The paper also develops ideas on the methodology to determine the complexity of “true” complex phenomena.\u

    Functional Dependencies in OWL ABox

    Get PDF
    Functional Dependency (FD) has been extensively studied in database theory. Most recently there have been some works investigating the implications of extending Description Logics with functional dependencies. In particular the OWL ontology language offers the functional property property allowing simple functional dependency to be specified. As it turns out, more complex FD specified as concept constructors has been proved to lead to undecidability in the general case, which restricts its usage as part of TBOX. This paper departs from previous ones by restricting FDs applicability to instances in the ABOX. We specify FD as a new constructor, an OWL concept. FD instances are mapped to Horn clauses and evaluated against the ABOX according to user’s desired behavior. The latter allows users to determine whether FDs should be interpreted as constraints, assertions or views. Our approach gives ontology users data guarantees usually found in databases, integrated with the ontology conceptual model

    OntoMaven: Maven-based Ontology Development and Management of Distributed Ontology Repositories

    Full text link
    In collaborative agile ontology development projects support for modular reuse of ontologies from large existing remote repositories, ontology project life cycle management, and transitive dependency management are important needs. The Apache Maven approach has proven its success in distributed collaborative Software Engineering by its widespread adoption. The contribution of this paper is a new design artifact called OntoMaven. OntoMaven adopts the Maven-based development methodology and adapts its concepts to knowledge engineering for Maven-based ontology development and management of ontology artifacts in distributed ontology repositories.Comment: Pre-print submission to 9th International Workshop on Semantic Web Enabled Software Engineering (SWESE2013). Berlin, Germany, December 2-5, 201

    Relating geometry descriptions to its derivatives on the web

    Get PDF
    Sharing building information over the Web is becoming more popular, leading to advances in describing building models in a Semantic Web context. However, those descriptions lack unified approaches for linking geometry descriptions to building elements, derived properties and derived other geometry descriptions. To bridge this gap, we analyse the basic characteristics of geometric dependencies and propose the Ontology for Managing Geometry (OMG) based on this analysis. In this paper, we present our results and show how the OMG provides means to link geometric and non-geometric data in meaningful ways. Thus, exchanging building data, including geometry, on the Web becomes more efficient

    CML: the commonKADS conceptual modelling language

    Get PDF
    We present a structured language for the specification of knowledge models according to the CommonKADS methodology. This language is called CML (Conceptual Modelling Language) and provides both a structured textual notation and a diagrammatic notation for expertise models. The use of our CML is illustrated by a variety of examples taken from the VT elevator design system
    • …
    corecore