1,151 research outputs found

    Enriched biodiversity data as a resource and service

    Get PDF
    Background: Recent years have seen a surge in projects that produce large volumes of structured, machine-readable biodiversity data. To make these data amenable to processing by generic, open source “data enrichment” workflows, they are increasingly being represented in a variety of standards-compliant interchange formats. Here, we report on an initiative in which software developers and taxonomists came together to address the challenges and highlight the opportunities in the enrichment of such biodiversity data by engaging in intensive, collaborative software development: The Biodiversity Data Enrichment Hackathon. Results: The hackathon brought together 37 participants (including developers and taxonomists, i.e. scientific professionals that gather, identify, name and classify species) from 10 countries: Belgium, Bulgaria, Canada, Finland, Germany, Italy, the Netherlands, New Zealand, the UK, and the US. The participants brought expertise in processing structured data, text mining, development of ontologies, digital identification keys, geographic information systems, niche modeling, natural language processing, provenance annotation, semantic integration, taxonomic name resolution, web service interfaces, workflow tools and visualisation. Most use cases and exemplar data were provided by taxonomists. One goal of the meeting was to facilitate re-use and enhancement of biodiversity knowledge by a broad range of stakeholders, such as taxonomists, systematists, ecologists, niche modelers, informaticians and ontologists. The suggested use cases resulted in nine breakout groups addressing three main themes: i) mobilising heritage biodiversity knowledge; ii) formalising and linking concepts; and iii) addressing interoperability between service platforms. Another goal was to further foster a community of experts in biodiversity informatics and to build human links between research projects and institutions, in response to recent calls to further such integration in this research domain. Conclusions: Beyond deriving prototype solutions for each use case, areas of inadequacy were discussed and are being pursued further. It was striking how many possible applications for biodiversity data there were and how quickly solutions could be put together when the normal constraints to collaboration were broken down for a week. Conversely, mobilising biodiversity knowledge from their silos in heritage literature and natural history collections will continue to require formalisation of the concepts (and the links between them) that define the research domain, as well as increased interoperability between the software platforms that operate on these concepts

    Collaborative knowledge as a service applied to the disaster management domain

    Get PDF
    Cloud computing offers services which promise to meet continuously increasing computing demands by using a large number of networked resources. However, data heterogeneity remains a major hurdle for data interoperability and data integration. In this context, a Knowledge as a Service (KaaS) approach has been proposed with the aim of generating knowledge from heterogeneous data and making it available as a service. In this paper, a Collaborative Knowledge as a Service (CKaaS) architecture is proposed, with the objective of satisfying consumer knowledge needs by integrating disparate cloud knowledge through collaboration among distributed KaaS entities. The NIST cloud computing reference architecture is extended by adding a KaaS layer that integrates diverse sources of data stored in a cloud environment. CKaaS implementation is domain-specific; therefore, this paper presents its application to the disaster management domain. A use case demonstrates collaboration of knowledge providers and shows how CKaaS operates with simulation models

    Federated Data Modeling for Built Environment Digital Twins

    Get PDF
    The digital twin (DT) approach is an enabler for data-driven decision making in architecture, engineering, construction, and operations. Various open data models that can potentially support the DT developments, at different scales and application domains, can be found in the literature. However, many implementations are based on organization-specific information management processes and proprietary data models, hindering interoperability. This article presents the process and information management approaches developed to generate a federated open data model supporting DT applications. The business process modeling notation and transaction and interaction modeling techniques are applied to formalize the federated DT data modeling framework, organized in three main phases: requirements definition, federation, validation and improvement. The proposed framework is developed adopting the cross-disciplinary and multiscale principles. A validation on the development of the federated building-level DT data model for the West Cambridge Campus DT research facility is conducted. The federated data model is used to enable DT-based asset management applications at the building and built environment levels
    • …
    corecore