1,430 research outputs found

    Tractable approximate deduction for OWL

    Get PDF
    Acknowledgements This work has been partially supported by the European project Marrying Ontologies and Software Technologies (EU ICT2008-216691), the European project Knowledge Driven Data Exploitation (EU FP7/IAPP2011-286348), the UK EPSRC project WhatIf (EP/J014354/1). The authors thank Prof. Ian Horrocks and Dr. Giorgos Stoilos for their helpful discussion on role subsumptions. The authors thank Rafael S. Gonçalves et al. for providing their hotspots ontologies. The authors also thank BoC-group for providing their ADOxx Metamodelling ontologies.Peer reviewedPostprin

    Computing Horn Rewritings of Description Logics Ontologies

    Full text link
    We study the problem of rewriting an ontology O1 expressed in a DL L1 into an ontology O2 in a Horn DL L2 such that O1 and O2 are equisatisfiable when extended with an arbitrary dataset. Ontologies that admit such rewritings are amenable to reasoning techniques ensuring tractability in data complexity. After showing undecidability whenever L1 extends ALCF, we focus on devising efficiently checkable conditions that ensure existence of a Horn rewriting. By lifting existing techniques for rewriting Disjunctive Datalog programs into plain Datalog to the case of arbitrary first-order programs with function symbols, we identify a class of ontologies that admit Horn rewritings of polynomial size. Our experiments indicate that many real-world ontologies satisfy our sufficient conditions and thus admit polynomial Horn rewritings.Comment: 15 pages. To appear in IJCAI-1

    Approximate Assertional Reasoning Over Expressive Ontologies

    Get PDF
    In this thesis, approximate reasoning methods for scalable assertional reasoning are provided whose computational properties can be established in a well-understood way, namely in terms of soundness and completeness, and whose quality can be analyzed in terms of statistical measurements, namely recall and precision. The basic idea of these approximate reasoning methods is to speed up reasoning by trading off the quality of reasoning results against increased speed
    corecore