9,340 research outputs found

    Next generation assisting clinical applications by using semantic-aware electronic health records

    Get PDF
    The health care sector is no longer imaginable without electronic health records. However; since the original idea of electronic health records was focused on data storage and not on data processing, a lot of current implementations do not take full advantage of the opportunities provided by computerization. This paper introduces the Patient Summary Ontology for the representation of electronic health records and demonstrates the possibility to create next generation assisting clinical applications based on these semantic-aware electronic health records. Also, an architecture to interoperate with electronic health records formatted using other standards is presented

    The Requirements for Ontologies in Medical Data Integration: A Case Study

    Full text link
    Evidence-based medicine is critically dependent on three sources of information: a medical knowledge base, the patients medical record and knowledge of available resources, including where appropriate, clinical protocols. Patient data is often scattered in a variety of databases and may, in a distributed model, be held across several disparate repositories. Consequently addressing the needs of an evidence-based medicine community presents issues of biomedical data integration, clinical interpretation and knowledge management. This paper outlines how the Health-e-Child project has approached the challenge of requirements specification for (bio-) medical data integration, from the level of cellular data, through disease to that of patient and population. The approach is illuminated through the requirements elicitation and analysis of Juvenile Idiopathic Arthritis (JIA), one of three diseases being studied in the EC-funded Health-e-Child project.Comment: 6 pages, 1 figure. Presented at the 11th International Database Engineering & Applications Symposium (Ideas2007). Banff, Canada September 200

    Ontology as the core discipline of biomedical informatics: Legacies of the past and recommendations for the future direction of research

    Get PDF
    The automatic integration of rapidly expanding information resources in the life sciences is one of the most challenging goals facing biomedical research today. Controlled vocabularies, terminologies, and coding systems play an important role in realizing this goal, by making it possible to draw together information from heterogeneous sources – for example pertaining to genes and proteins, drugs and diseases – secure in the knowledge that the same terms will also represent the same entities on all occasions of use. In the naming of genes, proteins, and other molecular structures, considerable efforts are under way to reduce the effects of the different naming conventions which have been spawned by different groups of researchers. Electronic patient records, too, increasingly involve the use of standardized terminologies, and tremendous efforts are currently being devoted to the creation of terminology resources that can meet the needs of a future era of personalized medicine, in which genomic and clinical data can be aligned in such a way that the corresponding information systems become interoperable

    Towards a Reference Terminology for Ontology Research and Development in the Biomedical Domain

    Get PDF
    Ontology is a burgeoning field, involving researchers from the computer science, philosophy, data and software engineering, logic, linguistics, and terminology domains. Many ontology-related terms with precise meanings in one of these domains have different meanings in others. Our purpose here is to initiate a path towards disambiguation of such terms. We draw primarily on the literature of biomedical informatics, not least because the problems caused by unclear or ambiguous use of terms have been there most thoroughly addressed. We advance a proposal resting on a distinction of three levels too often run together in biomedical ontology research: 1. the level of reality; 2. the level of cognitive representations of this reality; 3. the level of textual and graphical artifacts. We propose a reference terminology for ontology research and development that is designed to serve as common hub into which the several competing disciplinary terminologies can be mapped. We then justify our terminological choices through a critical treatment of the ‘concept orientation’ in biomedical terminology research

    Applications and Uses of Dental Ontologies

    No full text
    The development of a number of large-scale semantically-rich ontologies for biomedicine attests to the interest of life science researchers and clinicians in Semantic Web technologies. To date, however, the dental profession has lagged behind other areas of biomedicine in developing a commonly accepted, standardized ontology to support the representation of dental knowledge and information. This paper attempts to identify some of the potential uses of dental ontologies as part of an effort to motivate the development of ontologies for the dental domain. The identified uses of dental ontologies include support for advanced data analysis and knowledge discovery capabilities, the implementation of novel education and training technologies, the development of information exchange and interoperability solutions, the better integration of scientific and clinical evidence into clinical decision-making, and the development of better clinical decision support systems. Some of the social issues raised by these uses include the ethics of using patient data without consent, the role played by ontologies in enforcing compliance with regulatory criteria and legislative constraints, and the extent to which the advent of the Semantic Web introduces new training requirements for dental students. Some of the technological issues relate to the need to extract information from a variety of resources (for example, natural language texts), the need to automatically annotate information resources with ontology elements, and the need to establish mappings between a variety of existing dental terminologies

    An ontology to standardize research output of nutritional epidemiology : from paper-based standards to linked content

    Get PDF
    Background: The use of linked data in the Semantic Web is a promising approach to add value to nutrition research. An ontology, which defines the logical relationships between well-defined taxonomic terms, enables linking and harmonizing research output. To enable the description of domain-specific output in nutritional epidemiology, we propose the Ontology for Nutritional Epidemiology (ONE) according to authoritative guidance for nutritional epidemiology. Methods: Firstly, a scoping review was conducted to identify existing ontology terms for reuse in ONE. Secondly, existing data standards and reporting guidelines for nutritional epidemiology were converted into an ontology. The terms used in the standards were summarized and listed separately in a taxonomic hierarchy. Thirdly, the ontologies of the nutritional epidemiologic standards, reporting guidelines, and the core concepts were gathered in ONE. Three case studies were included to illustrate potential applications: (i) annotation of existing manuscripts and data, (ii) ontology-based inference, and (iii) estimation of reporting completeness in a sample of nine manuscripts. Results: Ontologies for food and nutrition (n = 37), disease and specific population (n = 100), data description (n = 21), research description (n = 35), and supplementary (meta) data description (n = 44) were reviewed and listed. ONE consists of 339 classes: 79 new classes to describe data and 24 new classes to describe the content of manuscripts. Conclusion: ONE is a resource to automate data integration, searching, and browsing, and can be used to assess reporting completeness in nutritional epidemiology

    Referent tracking for corporate memories

    Get PDF
    For corporate memory and enterprise ontology systems to be maximally useful, they must be freed from certain barriers placed around them by traditional knowledge management paradigms. This means, above all, that they must mirror more faithfully those portions of reality which are salient to the workings of the enterprise, including the changes that occur with the passage of time. The purpose of this chapter is to demonstrate how theories based on philosophical realism can contribute to this objective. We discuss how realism-based ontologies (capturing what is generic) combined with referent tracking (capturing what is specific) can play a key role in building the robust and useful corporate memories of the future

    An Ontology Approach for Knowledge Acquisition and Development of Health Information System (HIS)

    Get PDF
    This paper emphasizes various knowledge acquisition approaches in terms of tacit and explicit knowledge management that can be helpful to capture, codify and communicate within medical unit. The semantic-based knowledge management system (SKMS) supports knowledge acquisition and incorporates various approaches to provide systematic practical platform to knowledge practitioners and to identify various roles of healthcare professionals, tasks that can be performed according to personnel’s competencies, and activities that are carried out as a part of tasks to achieve defined goals of clinical process. This research outcome gives new vision to IT practitioners to manage the tacit and implicit knowledge in XML format which can be taken as foundation for the development of information systems (IS) so that domain end-users can receive timely healthcare related services according to their demands and needs
    • …
    corecore