415 research outputs found

    A precision medicine initiative for Alzheimer's disease: the road ahead to biomarker-guided integrative disease modeling

    Get PDF
    After intense scientific exploration and more than a decade of failed trials, Alzheimer’s disease (AD) remains a fatal global epidemic. A traditional research and drug development paradigm continues to target heterogeneous late-stage clinically phenotyped patients with single 'magic bullet' drugs. Here, we propose that it is time for a paradigm shift towards the implementation of precision medicine (PM) for enhanced risk screening, detection, treatment, and prevention of AD. The overarching structure of how PM for AD can be achieved will be provided through the convergence of breakthrough technological advances, including big data science, systems biology, genomic sequencing, blood-based biomarkers, integrated disease modeling and P4 medicine. It is hypothesized that deconstructing AD into multiple genetic and biological subsets existing within this heterogeneous target population will provide an effective PM strategy for treating individual patients with the specific agent(s) that are likely to work best based on the specific individual biological make-up. The Alzheimer’s Precision Medicine Initiative (APMI) is an international collaboration of leading interdisciplinary clinicians and scientists devoted towards the implementation of PM in Neurology, Psychiatry and Neuroscience. It is hypothesized that successful realization of PM in AD and other neurodegenerative diseases will result in breakthrough therapies, such as in oncology, with optimized safety profiles, better responder rates and treatment responses, particularly through biomarker-guided early preclinical disease-stage clinical trials

    Conceptualization of Computational Modeling Approaches and Interpretation of the Role of Neuroimaging Indices in Pathomechanisms for Pre-Clinical Detection of Alzheimer Disease

    Get PDF
    With swift advancements in next-generation sequencing technologies alongside the voluminous growth of biological data, a diversity of various data resources such as databases and web services have been created to facilitate data management, accessibility, and analysis. However, the burden of interoperability between dynamically growing data resources is an increasingly rate-limiting step in biomedicine, specifically concerning neurodegeneration. Over the years, massive investments and technological advancements for dementia research have resulted in large proportions of unmined data. Accordingly, there is an essential need for intelligent as well as integrative approaches to mine available data and substantiate novel research outcomes. Semantic frameworks provide a unique possibility to integrate multiple heterogeneous, high-resolution data resources with semantic integrity using standardized ontologies and vocabularies for context- specific domains. In this current work, (i) the functionality of a semantically structured terminology for mining pathway relevant knowledge from the literature, called Pathway Terminology System, is demonstrated and (ii) a context-specific high granularity semantic framework for neurodegenerative diseases, known as NeuroRDF, is presented. Neurodegenerative disorders are especially complex as they are characterized by widespread manifestations and the potential for dramatic alterations in disease progression over time. Early detection and prediction strategies through clinical pointers can provide promising solutions for effective treatment of AD. In the current work, we have presented the importance of bridging the gap between clinical and molecular biomarkers to effectively contribute to dementia research. Moreover, we address the need for a formalized framework called NIFT to automatically mine relevant clinical knowledge from the literature for substantiating high-resolution cause-and-effect models

    A Knowledge-based Integrative Modeling Approach for <em>In-Silico</em> Identification of Mechanistic Targets in Neurodegeneration with Focus on Alzheimer’s Disease

    Get PDF
    Dementia is the progressive decline in cognitive function due to damage or disease in the body beyond what might be expected from normal aging. Based on neuropathological and clinical criteria, dementia includes a spectrum of diseases, namely Alzheimer's dementia, Parkinson's dementia, Lewy Body disease, Alzheimer's dementia with Parkinson's, Pick's disease, Semantic dementia, and large and small vessel disease. It is thought that these disorders result from a combination of genetic and environmental risk factors. Despite accumulating knowledge that has been gained about pathophysiological and clinical characteristics of the disease, no coherent and integrative picture of molecular mechanisms underlying neurodegeneration in Alzheimer’s disease is available. Existing drugs only offer symptomatic relief to the patients and lack any efficient disease-modifying effects. The present research proposes a knowledge-based rationale towards integrative modeling of disease mechanism for identifying potential candidate targets and biomarkers in Alzheimer’s disease. Integrative disease modeling is an emerging knowledge-based paradigm in translational research that exploits the power of computational methods to collect, store, integrate, model and interpret accumulated disease information across different biological scales from molecules to phenotypes. It prepares the ground for transitioning from ‘descriptive’ to “mechanistic” representation of disease processes. The proposed approach was used to introduce an integrative framework, which integrates, on one hand, extracted knowledge from the literature using semantically supported text-mining technologies and, on the other hand, primary experimental data such as gene/protein expression or imaging readouts. The aim of such a hybrid integrative modeling approach was not only to provide a consolidated systems view on the disease mechanism as a whole but also to increase specificity and sensitivity of the mechanistic model by providing disease-specific context. This approach was successfully used for correlating clinical manifestations of the disease to their corresponding molecular events and led to the identification and modeling of three important mechanistic components underlying Alzheimer’s dementia, namely the CNS, the immune system and the endocrine components. These models were validated using a novel in-silico validation method, namely biomarker-guided pathway analysis and a pathway-based target identification approach was introduced, which resulted in the identification of the MAPK signaling pathway as a potential candidate target at the crossroad of the triad components underlying disease mechanism in Alzheimer’s dementia

    Advancing translational research with the Semantic Web

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>A fundamental goal of the U.S. National Institute of Health (NIH) "Roadmap" is to strengthen <it>Translational Research</it>, defined as the movement of discoveries in basic research to application at the clinical level. A significant barrier to translational research is the lack of uniformly structured data across related biomedical domains. The Semantic Web is an extension of the current Web that enables navigation and meaningful use of digital resources by automatic processes. It is based on common formats that support aggregation and integration of data drawn from diverse sources. A variety of technologies have been built on this foundation that, together, support identifying, representing, and reasoning across a wide range of biomedical data. The Semantic Web Health Care and Life Sciences Interest Group (HCLSIG), set up within the framework of the World Wide Web Consortium, was launched to explore the application of these technologies in a variety of areas. Subgroups focus on making biomedical data available in RDF, working with biomedical ontologies, prototyping clinical decision support systems, working on drug safety and efficacy communication, and supporting disease researchers navigating and annotating the large amount of potentially relevant literature.</p> <p>Results</p> <p>We present a scenario that shows the value of the information environment the Semantic Web can support for aiding neuroscience researchers. We then report on several projects by members of the HCLSIG, in the process illustrating the range of Semantic Web technologies that have applications in areas of biomedicine.</p> <p>Conclusion</p> <p>Semantic Web technologies present both promise and challenges. Current tools and standards are already adequate to implement components of the bench-to-bedside vision. On the other hand, these technologies are young. Gaps in standards and implementations still exist and adoption is limited by typical problems with early technology, such as the need for a critical mass of practitioners and installed base, and growing pains as the technology is scaled up. Still, the potential of interoperable knowledge sources for biomedicine, at the scale of the World Wide Web, merits continued work.</p

    Discovering lesser known molecular players and mechanistic patterns in Alzheimer's disease using an integrative disease modelling approach

    Get PDF
    Convergence of exponentially advancing technologies is driving medical research with life changing discoveries. On the contrary, repeated failures of high-profile drugs to battle Alzheimer's disease (AD) has made it one of the least successful therapeutic area. This failure pattern has provoked researchers to grapple with their beliefs about Alzheimer's aetiology. Thus, growing realisation that Amyloid-β and tau are not 'the' but rather 'one of the' factors necessitates the reassessment of pre-existing data to add new perspectives. To enable a holistic view of the disease, integrative modelling approaches are emerging as a powerful technique. Combining data at different scales and modes could considerably increase the predictive power of the integrative model by filling biological knowledge gaps. However, the reliability of the derived hypotheses largely depends on the completeness, quality, consistency, and context-specificity of the data. Thus, there is a need for agile methods and approaches that efficiently interrogate and utilise existing public data. This thesis presents the development of novel approaches and methods that address intrinsic issues of data integration and analysis in AD research. It aims to prioritise lesser-known AD candidates using highly curated and precise knowledge derived from integrated data. Here much of the emphasis is put on quality, reliability, and context-specificity. This thesis work showcases the benefit of integrating well-curated and disease-specific heterogeneous data in a semantic web-based framework for mining actionable knowledge. Furthermore, it introduces to the challenges encountered while harvesting information from literature and transcriptomic resources. State-of-the-art text-mining methodology is developed to extract miRNAs and its regulatory role in diseases and genes from the biomedical literature. To enable meta-analysis of biologically related transcriptomic data, a highly-curated metadata database has been developed, which explicates annotations specific to human and animal models. Finally, to corroborate common mechanistic patterns — embedded with novel candidates — across large-scale AD transcriptomic data, a new approach to generate gene regulatory networks has been developed. The work presented here has demonstrated its capability in identifying testable mechanistic hypotheses containing previously unknown or emerging knowledge from public data in two major publicly funded projects for Alzheimer's, Parkinson's and Epilepsy diseases

    Difficulties of Diagnosing Alzheimer's Disease: The Application of Clinical Decision Support Systems

    Get PDF
    Introduction: Alzheimer's disease is one of the most common causes of dementia, which gradually causes cognitive impairment. Diagnosis of Alzheimer's disease is a complicated process performed through several tests and examinations. Design and development of Clinical Decision Support System (CDSS) could be an appropriate approach for eliminating the existing difficulties of diagnosing Alzheimer's disease. Materials and Methods: This study reviews the current problems in the diagnosis of Alzheimer's disease with an approach to the application of CDSS. The study reviewed the articles published from 1990 to 2016. The articles were identified by searching electronic databases such as PubMed, Google Scholar, Science Direct. Considering the relevance of articles with the objectives of the study, 29 papers were selected. According to the performed investigations, various reasons cause difficulty in Alzheimer's diagnosis. Results: The complexity of diagnostic process and  the similarity of Alzheimer's disease with other causes of dementia are the most important of them. The results of studies about the application of CDSSs on Alzheimer's disease diagnosis indicated that the implementation of these systems could help to eliminate the existing difficulties in the diagnosis of Alzheimer's disease. Conclusion: Developing CDSSs based on diagnostic guidelines could be regarded as one of the possible approaches towards early and accurate diagnosis of Alzheimer's disease. Applying of computer-interpretable guideline (CIG) models such as GLIF, PROforma, Asbru, and EON can help to design CDSS with the capability of minimizing the burden of diagnostic problems with Alzheimer's disease

    Use of nonintrusive sensor-based information and communication technology for real-world evidence for clinical trials in dementia

    Get PDF
    Cognitive function is an important end point of treatments in dementia clinical trials. Measuring cognitive function by standardized tests, however, is biased toward highly constrained environments (such as hospitals) in selected samples. Patient-powered real-world evidence using information and communication technology devices, including environmental and wearable sensors, may help to overcome these limitations. This position paper describes current and novel information and communication technology devices and algorithms to monitor behavior and function in people with prodromal and manifest stages of dementia continuously, and discusses clinical, technological, ethical, regulatory, and user-centered requirements for collecting real-world evidence in future randomized controlled trials. Challenges of data safety, quality, and privacy and regulatory requirements need to be addressed by future smart sensor technologies. When these requirements are satisfied, these technologies will provide access to truly user relevant outcomes and broader cohorts of participants than currently sampled in clinical trials

    Tackling the biological meaning of the human olfactory bulb dyshomeostatic proteome across neurological disorders: an integrative bioinformatic approach

    Get PDF
    Olfactory dysfunction is considered an early prodromal marker of many neurodegenerative diseases. Neuropathological changes and aberrant protein aggregates occur in the olfactory bulb (OB), triggering a tangled cascade of molecular events that is not completely understood across neurological disorders. This study aims to analyze commonalities and differences in the olfactory protein homeostasis across neurological backgrounds with different spectrums of smell dysfunction. For that, an integrative analysis was performed using OB proteomics datasets derived from subjects with Alzheimer’s disease (AD), Parkinson´s disease (PD), mixed dementia (mixD), dementia with Lewy bodies (DLB), frontotemporal lobar degeneration (FTLD-TDP43), progressive supranuclear palsy (PSP) and amyotrophic lateral sclerosis (ALS) with respect to OB proteome data from neurologically intact controls. A total of 80% of the differential expressed protein products were potentially disease-specific whereas the remaining 20% were commonly altered across two, three or four neurological phenotypes. A multi-level bioinformatic characterization revealed a subset of potential disease-specific transcription factors responsible for the downstream effects detected at the proteome level as well as specific densely connected protein complexes targeted by several neurological phenotypes. Interestingly, common or unique pathways and biofunctions were also identified, providing novel mechanistic clues about each neurological disease at olfactory level. The analysis of olfactory epithelium, olfactory tract and primary olfactory cortical proteotypes in a multi-disease format will functionally complement the OB dyshomeostasis, increasing our knowledge about the neurodegenerative process across the olfactory axis.This work was funded by grants from the Spanish Ministry of Science, Innovation and Universities (Ref. PID2019-110356RB-I00/ AEI / 10.13039/501100011033 to JF-I and ES) and the Department of Economic and Business Development of the Government of Navarra (Ref. 0011-14112020-000028 to ES).The Proteomics Platform of Navarrabiomed, member of Proteored (PRB3ISCIII), was supported by grant PT17/0019/009, of the PE I+D+I 2013-2016 funded by ISCIII and FEDER to JF. The Clinical Neuroproteomics Unit of Navarrabiomed is member of the Spanish Olfactory Network (ROE) (supported by grant RED2018-102662-T funded by Spanish Ministry of Science and Innovation) and the Global Consortium for Chemosensory Research (GCCR)

    Utilising semantic technologies for decision support in dementia care

    Get PDF
    The main objective of this work is to discuss our experience in utilising semantic technologies for building decision support in Dementia care systems that are based on the non-intrusive on the non-intrusive monitoring of the patient’s behaviour. Our approach adopts context-aware modelling of the patient’s condition to facilitate the analysis of the patient’s behaviour within the inhabited environment (movement and room occupancy patterns, use of equipment, etc.) with reference to the semantic knowledge about the patient’s condition (history of present of illness, dependable behaviour patterns, etc.). The reported work especially focuses on the critical role of the semantic reasoning engine in inferring medical advice, and by means of practical experimentation and critical analysis suggests important findings related to the methodology of deploying the appropriate semantic rules systems, and the dynamics of the efficient utilisation of complex event processing technology in order to the meet the requirements of decision support for remote healthcare systems
    corecore