1,324 research outputs found

    Exploiting Deep Semantics and Compositionality of Natural Language for Human-Robot-Interaction

    Full text link
    We develop a natural language interface for human robot interaction that implements reasoning about deep semantics in natural language. To realize the required deep analysis, we employ methods from cognitive linguistics, namely the modular and compositional framework of Embodied Construction Grammar (ECG) [Feldman, 2009]. Using ECG, robots are able to solve fine-grained reference resolution problems and other issues related to deep semantics and compositionality of natural language. This also includes verbal interaction with humans to clarify commands and queries that are too ambiguous to be executed safely. We implement our NLU framework as a ROS package and present proof-of-concept scenarios with different robots, as well as a survey on the state of the art

    Why it is important to build robots capable of doing science

    Get PDF
    Science, like any other cognitive activity, is grounded in the sensorimotor interaction of our bodies with the environment. Human embodiment thus constrains the class of scientific concepts and theories which are accessible to us. The paper explores the possibility of doing science with artificial cognitive agents, in the framework of an interactivist-constructivist cognitive model of science. Intelligent robots, by virtue of having different sensorimotor capabilities, may overcome the fundamental limitations of human science and provide important technological innovations. Mathematics and nanophysics are prime candidates for being studied by artificial scientists

    From killer machines to doctrines and swarms; or why ethics of military robotics is not (necessarily) about robots.

    Get PDF
    Ethical reflections on military robotics can be enriched by a better understanding of the nature and role of these technologies and by putting robotics into context in various ways. Discussing a range of ethical questions, this paper challenges the prevalent assumptions that military robotics is about military technology as a mere means to an end, about single killer machines, and about “military” developments. It recommends that ethics of robotics attend to how military technology changes our aims, concern itself not only with individual robots but also and especially with networks and swarms, and adapt its conceptions of responsibility to the rise of such cloudy and unpredictable systems, which rely on decentralized control and buzz across many spheres of human activity

    Agent Based Modeling and Simulation: An Informatics Perspective

    Get PDF
    The term computer simulation is related to the usage of a computational model in order to improve the understanding of a system's behavior and/or to evaluate strategies for its operation, in explanatory or predictive schemes. There are cases in which practical or ethical reasons make it impossible to realize direct observations: in these cases, the possibility of realizing 'in-machina' experiments may represent the only way to study, analyze and evaluate models of those realities. Different situations and systems are characterized by the presence of autonomous entities whose local behaviors (actions and interactions) determine the evolution of the overall system; agent-based models are particularly suited to support the definition of models of such systems, but also to support the design and implementation of simulators. Agent-Based models and Multi-Agent Systems (MAS) have been adopted to simulate very different kinds of complex systems, from the simulation of socio-economic systems to the elaboration of scenarios for logistics optimization, from biological systems to urban planning. This paper discusses the specific aspects of this approach to modeling and simulation from the perspective of Informatics, describing the typical elements of an agent-based simulation model and the relevant research.Multi-Agent Systems, Agent-Based Modeling and Simulation

    Neurocognitive Informatics Manifesto.

    Get PDF
    Informatics studies all aspects of the structure of natural and artificial information systems. Theoretical and abstract approaches to information have made great advances, but human information processing is still unmatched in many areas, including information management, representation and understanding. Neurocognitive informatics is a new, emerging field that should help to improve the matching of artificial and natural systems, and inspire better computational algorithms to solve problems that are still beyond the reach of machines. In this position paper examples of neurocognitive inspirations and promising directions in this area are given

    The Knowledge Level in Cognitive Architectures: Current Limitations and Possible Developments

    Get PDF
    In this paper we identify and characterize an analysis of two problematic aspects affecting the representational level of cognitive architectures (CAs), namely: the limited size and the homogeneous typology of the encoded and processed knowledge. We argue that such aspects may constitute not only a technological problem that, in our opinion, should be addressed in order to build articial agents able to exhibit intelligent behaviours in general scenarios, but also an epistemological one, since they limit the plausibility of the comparison of the CAs' knowledge representation and processing mechanisms with those executed by humans in their everyday activities. In the final part of the paper further directions of research will be explored, trying to address current limitations and future challenges

    Exploring Natural User Abstractions For Shared Perceptual Manipulator Task Modeling & Recovery

    Get PDF
    State-of-the-art domestic robot assistants are essentially autonomous mobile manipulators capable of exerting human-scale precision grasps. To maximize utility and economy, non-technical end-users would need to be nearly as efficient as trained roboticists in control and collaboration of manipulation task behaviors. However, it remains a significant challenge given that many WIMP-style tools require superficial proficiency in robotics, 3D graphics, and computer science for rapid task modeling and recovery. But research on robot-centric collaboration has garnered momentum in recent years; robots are now planning in partially observable environments that maintain geometries and semantic maps, presenting opportunities for non-experts to cooperatively control task behavior with autonomous-planning agents exploiting the knowledge. However, as autonomous systems are not immune to errors under perceptual difficulty, a human-in-the-loop is needed to bias autonomous-planning towards recovery conditions that resume the task and avoid similar errors. In this work, we explore interactive techniques allowing non-technical users to model task behaviors and perceive cooperatively with a service robot under robot-centric collaboration. We evaluate stylus and touch modalities that users can intuitively and effectively convey natural abstractions of high-level tasks, semantic revisions, and geometries about the world. Experiments are conducted with \u27pick-and-place\u27 tasks in an ideal \u27Blocks World\u27 environment using a Kinova JACO six degree-of-freedom manipulator. Possibilities for the architecture and interface are demonstrated with the following features; (1) Semantic \u27Object\u27 and \u27Location\u27 grounding that describe function and ambiguous geometries (2) Task specification with an unordered list of goal predicates, and (3) Guiding task recovery with implied scene geometries and trajectory via symmetry cues and configuration space abstraction. Empirical results from four user studies show our interface was much preferred than the control condition, demonstrating high learnability and ease-of-use that enable our non-technical participants to model complex tasks, provide effective recovery assistance, and teleoperative control
    • …
    corecore