37 research outputs found

    Energy Efficiency

    Get PDF
    Energy efficiency is finally a common sense term. Nowadays almost everyone knows that using energy more efficiently saves money, reduces the emissions of greenhouse gasses and lowers dependence on imported fossil fuels. We are living in a fossil age at the peak of its strength. Competition for securing resources for fuelling economic development is increasing, price of fuels will increase while availability of would gradually decline. Small nations will be first to suffer if caught unprepared in the midst of the struggle for resources among the large players. Here it is where energy efficiency has a potential to lead toward the natural next step - transition away from imported fossil fuels! Someone said that the only thing more harmful then fossil fuel is fossilized thinking. It is our sincere hope that some of chapters in this book will influence you to take a fresh look at the transition to low carbon economy and the role that energy efficiency can play in that process

    Aeronautical engineering: A continuing bibliography with indexes (supplement 270)

    Get PDF
    This bibliography lists 600 reports, articles, and other documents introduced into the NASA scientific and technical information system in September, 1991. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics

    A FORMAL REPRESENTATION OF MECHANICAL FUNCTIONS TO SUPPORT PHYSICS-BASED COMPUTATIONAL REASONING IN EARLY MECHANICAL DESIGN

    Get PDF
    The lack of computational support to the conceptual phase of mechanical engineering design is well recognized. Function-based modeling and thinking is widely recommended in design texts as useful means for describing design concepts and using them in tasks such as solution search, problem decomposition, and design archival. Graph-based function structure models that describe a product as a network of transformative actions of material, energy, and information, are discussed as a potential tool for this purpose, but in the current state of the art, function structures are not formalized as a computational representation. Consequently, no computer tool exists with which a designer can construct grammatically controlled function structure models, explore design ideas by model editing, and perform automated reasoning on the model against the laws of nature to draw analytical inferences on the design. This research presents, verifies, and validates a formal representation of mechanical functions that supports consistent computer-aided modeling of early design and reasoning on those models based on two universal principles of physics: (1) conservation and (2) irreversibility. The representation is complete in three layers. The first layer--the Conservation Layer--is defined with nine entities, five relations, five attributes, and 33 grammar rules that together formalize the construction of function structure graphs and support conservation-based qualitative validation of design concepts. The second layer--the Irreversibility Layer--includes three additional attributes that support both conservation-based and irreversibility-based reasoning at qualitative and quantitative levels. The third layer--the Semantic Layer--is an extension of the previous two, where a vocabulary of nine verbs that describe mechanical devices and physical principles as functions is proposed. This layer supports feature-based modeling and semantic reasoning of function structures. The internal consistency of the representation is verified by logical examination and ontological consistency checking using Protégé-OWL. The coverage of the verbs is examined by constructing descriptive function structure models of a variety of existing physical principles and devices. The research is validated by incorporating the representation in a software tool using an object-oriented language and graphic user-interface, and by using the tool to construct models and demonstrate conservation-based and irreversibility-based reasoning

    Power System Digital Twins and Real-Time Simulations in Modern Grids

    Full text link
    Power systems are in a state of constant change with new hardware, software and applications affecting their planning, operation, and maintenance. Power system control centers are also evolving through new technologies and functionalities to adapt to current needs. System control rooms have moved from fully manual to automated operations, from analog to digital, and have become an embedded and complex information, communication, computation and control system. Digital twins are virtual representations of physical systems, assets and/or processes. They are enabled through software, hardware and data integration, and allow real-time monitoring, controlling, prediction, optimization, and improved decision-making. Consequently, digital twins arise as a technology capable of incorporating existing control systems along with new ones to collect, classify, store, retrieve and disseminate data for the future generation of control centers. Power system digital twins (PSDTs) can uplift how data from power grids and their equipment is processed, providing operators new ways to visualize and understand the information. Nevertheless, complexity and size of modern power systems narrow the scope a current digital twin can have. Furthermore, the services provided are limited to only certain phenomena and/or applications. This thesis addresses the need for a flexible and versatile solution that is also robust and adaptable for monitoring, operating and planning future power systems. The modular design for implementation of the next generation of PSDTs is proposed based on grid applications and/or services they can provide. From a modeling perspective, this thesis also distinguishes how real-time simulations enable the design, development, and operation of a PSDT. First, the need for enhanced power system modeling and simulation techniques is established. Moreover, the necessity of expanding to a more complete and varied open-source library of power system models is identified. The thesis continues by designing, developing, and testing models of inverter-based resources that can be used by the industry and researchers when developing PSDTs. Furthermore, the first-of-its-kind synthetic grid with a longitudinal structure, the S-NEM2300-bus benchmark model, based on the Australian National Electricity Market is created. The synthetic grid is, finally, used to illustrate the first steps towards implementing a practical PSDT

    Proceedings of the Scientific-Practical Conference "Research and Development - 2016"

    Get PDF
    talent management; sensor arrays; automatic speech recognition; dry separation technology; oil production; oil waste; laser technolog

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Friction Force Microscopy of Deep Drawing Made Surfaces

    Get PDF
    Aim of this paper is to contribute to micro-tribology understanding and friction in micro-scale interpretation in case of metal beverage production, particularly the deep drawing process of cans. In order to bridging the gap between engineering and trial-and-error principles, an experimental AFM-based micro-tribological approach is adopted. For that purpose, the can’s surfaces are imaged with atomic force microscopy (AFM) and the frictional force signal is measured with frictional force microscopy (FFM). In both techniques, the sample surface is scanned with a stylus attached to a cantilever. Vertical motion of the cantilever is recorded in AFM and horizontal motion is recorded in FFM. The presented work evaluates friction over a micro-scale on various samples gathered from cylindrical, bottom and round parts of cans, made of same the material but with different deep drawing process parameters. The main idea is to link the experimental observation with the manufacturing process. Results presented here can advance the knowledge in order to comprehend the tribological phenomena at the contact scales, too small for conventional tribology

    Towards a Conceptual Design of an Intelligent Material Transport Based on Machine Learning and Axiomatic Design Theory

    Get PDF
    Reliable and efficient material transport is one of the basic requirements that affect productivity in sheet metal industry. This paper presents a methodology for conceptual design of intelligent material transport using mobile robot, based on axiomatic design theory, graph theory and artificial intelligence. Developed control algorithm was implemented and tested on the mobile robot system Khepera II within the laboratory model of manufacturing environment. Matlab© software package was used for manufacturing process simulation, implementation of search algorithms and neural network training. Experimental results clearly show that intelligent mobile robot can learn and predict optimal material transport flows thanks to the use of artificial neural networks. Achieved positioning error of mobile robot indicates that conceptual design approach can be used for material transport and handling tasks in intelligent manufacturing systems

    Proceedings of the International Workshop "Innovation Information Technologies: Theory and Practice": Dresden, Germany, September 06-10.2010

    Get PDF
    This International Workshop is a high quality seminar providing a forum for the exchange of scientific achievements between research communities of different universities and research institutes in the area of innovation information technologies. It is a continuation of the Russian-German Workshops that have been organized by the universities in Dresden, Karlsruhe and Ufa before. The workshop was arranged in 9 sessions covering the major topics: Modern Trends in Information Technology, Knowledge Based Systems and Semantic Modelling, Software Technology and High Performance Computing, Geo-Information Systems and Virtual Reality, System and Process Engineering, Process Control and Management and Corporate Information Systems
    corecore