1,470 research outputs found

    Taking the Initiative? TLRP and Educational Research

    Get PDF

    Ontology and Information Systems

    Get PDF
    In a development that has still been hardly noticed by philosophers, a conception of ontology has been advanced in recent years in a series of extra-philosophical disciplines as researchers in linguistics, psychology, geography and anthropology have sought to elicit the ontological commitments (‘ontologies’, in the plural) of different cultures or disciplines. Exploiting the terminology of Quine, researchers in psychology and anthropology have sought to establish what individual human subjects, or entire human cultures, are committed to, ontologically, in their everyday cognition, in much the same way in which philosophers of science have attempted to elicit the ontological commitments of the natural sciences. Thus they have engaged in inquiries designed to establish how folk ontologies (or folk biologies, folk theories of physics, folk psychologies, and so on) develop through infancy and childhood, or to establish the degree to which given elements of folk ontologies reflect universal features of the human cognitive system. In a parallel development, researchers in biomedicine developed what they called 'ontologies' as controlled vocabularies to ensure interoperability of the way in which, for example, genomic data is described in different biological disciplines. We describe in what follows some of the relations between these efforts and the more traditional concerns of philosophers

    BIOMEDICAL ONTOLOGIES: EXAMINING ASPECTS OF INTEGRATION ACROSS BREAST CANCER KNOWLEDGE DOMAINS

    Get PDF
    The key ideas developed in this thesis lie at the intersection of epistemology, philosophy of molecular biology, medicine, and computer science. I examine how the epistemic and pragmatic needs of agents distributed across particular scientific disciplines influence the domain-specific reasoning, classification, and representation of breast cancer. The motivation to undertake an interdisciplinary approach, while addressing the problems of knowledge integration, originates in the peculiarity of the integrative endeavour of sciences that is fostered by information technologies and ontology engineering methods. I analyse what knowledge integration in this new field means and how it is possible to integrate diverse knowledge domains, such as clinical and molecular. I examine the extent and character of the integration achieved through the application of biomedical ontologies. While particular disciplines target certain aspects of breast cancer-related phenomena, biomedical ontologies target biomedical knowledge about phenomena that is often captured within diverse classificatory systems and domain-specific representations. In order to integrate dispersed pieces of knowledge, which is distributed across assorted research domains and knowledgebases, ontology engineers need to deal with the heterogeneity of terminological, conceptual, and practical aims that are not always shared among the domains. Accordingly, I analyse the specificities, similarities, and diversities across the clinical and biomedical domain conceptualisations and classifications of breast cancer. Instead of favouring a unifying approach to knowledge integration, my analysis shows that heterogeneous classifications and representations originate from different epistemic and pragmatic needs, each of which brings a fruitful insight into the problem. Thus, while embracing a pluralistic view on the ontologies that are capturing various aspects of knowledge, I argue that the resulting integration should be understood in terms of a coordinated social effort to bring knowledge together as needed and when needed, rather than in terms of a unity that represents domain-specific knowledge in a uniform manner. Furthermore, I characterise biomedical ontologies and knowledgebases as a novel socio-technological medium that allows representational interoperability across the domains. As an example, which also marks my own contribution to the collaborative efforts, I present an ontology for HER2+ breast cancer phenotypes that integrates clinical and molecular knowledge in an explicit way. Through this and a number of other examples, I specify how biomedical ontologies support a mutual enrichment of knowledge across the domains, thereby enabling the application of molecular knowledge into the clinics

    Ontology

    Get PDF

    Taking the Initiative? TLRP and Educational Research

    Get PDF
    Evaluating the effects of known subject traits on pediatric GI community structure and function. PCoA of the GI microbial communities of healthy children as a function of Bray-Curtis dissimilarities and 16S-based OTUs (A–D), WGS-based species (E–H), KO groups (I–L), and KEGG pathway profiles (M–P). Variation among profiles was evaluated with respect to known traits, and the percent variation captured by each axis is indicated in parenthesis. Adonis analysis results describe the significance of each trait to overall community variation. (TIF 1.58 kb

    Towards a machine enabled semantic framework for the distributed engineering design

    Get PDF
    The overall aim of this thesis is to identify and propose a suitable architectural framework for supporting cooperation processes and therefore enabling semantics within the distributed engineering design environment. The proposed architecture is intended to\ud characterize a software-based management of design related data, information and knowledge flows in the distributed engineering design organization. The aim is to provide a computational context for implementing ICT tools that would: (i) Minimise the effect of user and resource dispersion (particularly temporal and geographical dispersion), the misunderstandings that might be generated by the\ud (otherwise beneficial) functional and semantic distribution, the time spent for searching and retrieval of information, the effort of information translation between different tools and the administrational and organisational efforts not directly related to the design process (e.g. revision control) (ii) Maximise the quality of information (i.e. relevant information at relevant and appropriate times), knowledge sharing and reuse among distributed design\ud actors, the flexibility of the user interfaces and the designer’s time spent in the actual designing process.\ud In order to achieve the overall aim, the research work supporting this thesis was carried out along the following objectives:\ud 1. To investigate and characterize the engineering design process performed in a distributed environment and its problematic aspects;\ud 2. To research and study alternative theories for thinking and modelling the distributed engineering design process;\ud 3. To investigate current research in information and knowledge management for identifying supporting technologies for a possible solution to the identified\ud problematic aspects (from point 1);\ud 4. To analyze the requirement needs for a solution according to the findings from previous objectives, i.e. the driving problems (from point 1), the research and\ud therefore the thinking approach (from point 2), and available supporting technologies (from point 3);\ud 5. To synthesize the architectural framework along the identified supporting technologies (from point 3);\ud 6. To instantiate a software system along the underlying computational context as described by the architectural framework (from point 5)
    • …
    corecore