32,444 research outputs found

    Semantically Resolving Type Mismatches in Scientific Workflows

    No full text
    Scientists are increasingly utilizing Grids to manage large data sets and execute scientific experiments on distributed resources. Scientific workflows are used as means for modeling and enacting scientific experiments. Windows Workflow Foundation (WF) is a major component of Microsoft’s .NET technology which offers lightweight support for long-running workflows. It provides a comfortable graphical and programmatic environment for the development of extended BPEL-style workflows. WF’s visual features ease the syntactic composition of Web services into scientific workflows but do nothing to assure that information passed between services has consistent semantic types or representations or that deviant flows, errors and compensations are handled meaningfully. In this paper we introduce SAWSDL-compliant annotations for WF and use them with a semantic reasoner to guarantee semantic type correctness in scientific workflows. Examples from bioinformatics are presented

    A semantical framework for the orchestration and choreography of web services

    Get PDF
    Web Services are software services that can be advertised by providers and invoked by customers using Web technologies. This concept is currently carried further to address the composition of individual services through orchestration and choreography to services processes that communicate and interact with each other. We propose an ontology framework for these Web service processes that provides techniques for their description, matching, and composition. A description logic-based knowledge representation and reasoning framework provides the foundations. We will base this ontological framework on an operational model of service process behaviour and composition

    Enriching ontological user profiles with tagging history for multi-domain recommendations

    Get PDF
    Many advanced recommendation frameworks employ ontologies of various complexities to model individuals and items, providing a mechanism for the expression of user interests and the representation of item attributes. As a result, complex matching techniques can be applied to support individuals in the discovery of items according to explicit and implicit user preferences. Recently, the rapid adoption of Web2.0, and the proliferation of social networking sites, has resulted in more and more users providing an increasing amount of information about themselves that could be exploited for recommendation purposes. However, the unification of personal information with ontologies using the contemporary knowledge representation methods often associated with Web2.0 applications, such as community tagging, is a non-trivial task. In this paper, we propose a method for the unification of tags with ontologies by grounding tags to a shared representation in the form of Wordnet and Wikipedia. We incorporate individuals' tagging history into their ontological profiles by matching tags with ontology concepts. This approach is preliminary evaluated by extending an existing news recommendation system with user tagging histories harvested from popular social networking sites

    Optical tomography: Image improvement using mixed projection of parallel and fan beam modes

    Get PDF
    Mixed parallel and fan beam projection is a technique used to increase the quality images. This research focuses on enhancing the image quality in optical tomography. Image quality can be defined by measuring the Peak Signal to Noise Ratio (PSNR) and Normalized Mean Square Error (NMSE) parameters. The findings of this research prove that by combining parallel and fan beam projection, the image quality can be increased by more than 10%in terms of its PSNR value and more than 100% in terms of its NMSE value compared to a single parallel beam

    Case-based analysis in user requirements modelling for knowledge construction

    Get PDF
    Context: Learning can be regarded as knowledge construction in which prior knowledge and experience serve as basis for the learners to expand their knowledge base. Such a process of knowledge construction has to take place continuously in order to enhance the learners’ competence in a competitive working environment. As the information consumers, the individual users demand personalised information provision which meets their own specific purposes, goals, and expectations. Objectives: The current methods in requirements engineering are capable of modelling the common user’s behaviour in the domain of knowledge construction. The users’ requirements can be represented as a case in the defined structure which can be reasoned to enable the requirements analysis. Such analysis needs to be enhanced so that personalised information provision can be tackled and modelled. However, there is a lack of suitable modelling methods to achieve this end. This paper presents a new ontological method for capturing individual user’s requirements and transforming the requirements onto personalised information provision specifications. Hence the right information can be provided to the right user for the right purpose. Method: An experiment was conducted based on the qualitative method. A medium size of group of users participated to validate the method and its techniques, i.e. articulates, maps, configures, and learning content. The results were used as the feedback for the improvement. Result: The research work has produced an ontology model with a set of techniques which support the functions for profiling user’s requirements, reasoning requirements patterns, generating workflow from norms, and formulating information provision specifications. Conclusion: The current requirements engineering approaches provide the methodical capability for developing solutions. Our research outcome, i.e. the ontology model with the techniques, can further enhance the RE approaches for modelling the individual user’s needs and discovering the user’s requirements

    Analysis reuse exploiting taxonomical information and belief assignment in industrial problem solving

    Get PDF
    To take into account the experience feedback on solving complex problems in business is deemed as a way to improve the quality of products and processes. Only a few academic works, however, are concerned with the representation and the instrumentation of experience feedback systems. We propose, in this paper, a model of experiences and mechanisms to use these experiences. More specifically, we wish to encourage the reuse of already performed expert analysis to propose a priori analysis in the solving of a new problem. The proposal is based on a representation in the context of the experience of using a conceptual marker and an explicit representation of the analysis incorporating expert opinions and the fusion of these opinions. The experience feedback models and inference mechanisms are integrated in a commercial support tool for problem solving methodologies. The results obtained to this point have already led to the definition of the role of ‘‘Rex Manager’’ with principles of sustainable management for continuous improvement of industrial processes in companies

    Ontological View-driven Semantic Integration in Open Environments

    Get PDF
    In an open computing environment, such as the World Wide Web or an enterprise Intranet, various information systems are expected to work together to support information exchange, processing, and integration. However, information systems are usually built by different people, at different times, to fulfil different requirements and goals. Consequently, in the absence of an architectural framework for information integration geared toward semantic integration, there are widely varying viewpoints and assumptions regarding what is essentially the same subject. Therefore, communication among the components supporting various applications is not possible without at least some translation. This problem, however, is much more than a simple agreement on tags or mappings between roughly equivalent sets of tags in related standards. Industry-wide initiatives and academic studies have shown that complex representation issues can arise. To deal with these issues, a deep understanding and appropriate treatment of semantic integration is needed. Ontology is an important and widely accepted approach for semantic integration. However, usually there are no explicit ontologies with information systems. Rather, the associated semantics are implied within the supporting information model. It reflects a specific view of the conceptualization that is implicitly defining an ontological view. This research proposes to adopt ontological views to facilitate semantic integration for information systems in open environments. It proposes a theoretical foundation of ontological views, practical assumptions, and related solutions for research issues. The proposed solutions mainly focus on three aspects: the architecture of a semantic integration enabled environment, ontological view modeling and representation, and semantic equivalence relationship discovery. The solutions are applied to the collaborative intelligence project for the collaborative promotion / advertisement domain. Various quality aspects of the solutions are evaluated and future directions of the research are discussed
    corecore