6,791 research outputs found

    Online Carpooling Using Expander Decompositions

    Get PDF
    We consider the online carpooling problem: given n vertices, a sequence of edges arrive over time. When an edge e_t = (u_t, v_t) arrives at time step t, the algorithm must orient the edge either as v_t ? u_t or u_t ? v_t, with the objective of minimizing the maximum discrepancy of any vertex, i.e., the absolute difference between its in-degree and out-degree. Edges correspond to pairs of persons wanting to ride together, and orienting denotes designating the driver. The discrepancy objective then corresponds to every person driving close to their fair share of rides they participate in. In this paper, we design efficient algorithms which can maintain polylog(n,T) maximum discrepancy (w.h.p) over any sequence of T arrivals, when the arriving edges are sampled independently and uniformly from any given graph G. This provides the first polylogarithmic bounds for the online (stochastic) carpooling problem. Prior to this work, the best known bounds were O(?{n log n})-discrepancy for any adversarial sequence of arrivals, or O(log log n)-discrepancy bounds for the stochastic arrivals when G is the complete graph. The technical crux of our paper is in showing that the simple greedy algorithm, which has provably good discrepancy bounds when the arriving edges are drawn uniformly at random from the complete graph, also has polylog discrepancy when G is an expander graph. We then combine this with known expander-decomposition results to design our overall algorithm

    The Iray Light Transport Simulation and Rendering System

    Full text link
    While ray tracing has become increasingly common and path tracing is well understood by now, a major challenge lies in crafting an easy-to-use and efficient system implementing these technologies. Following a purely physically-based paradigm while still allowing for artistic workflows, the Iray light transport simulation and rendering system allows for rendering complex scenes by the push of a button and thus makes accurate light transport simulation widely available. In this document we discuss the challenges and implementation choices that follow from our primary design decisions, demonstrating that such a rendering system can be made a practical, scalable, and efficient real-world application that has been adopted by various companies across many fields and is in use by many industry professionals today

    Online Discrepancy Minimization for Stochastic Arrivals

    Get PDF
    In the stochastic online vector balancing problem, vectors v1,v2,,vTv_1,v_2,\ldots,v_T chosen independently from an arbitrary distribution in Rn\mathbb{R}^n arrive one-by-one and must be immediately given a ±\pm sign. The goal is to keep the norm of the discrepancy vector, i.e., the signed prefix-sum, as small as possible for a given target norm. We consider some of the most well-known problems in discrepancy theory in the above online stochastic setting, and give algorithms that match the known offline bounds up to polylog(nT)\mathsf{polylog}(nT) factors. This substantially generalizes and improves upon the previous results of Bansal, Jiang, Singla, and Sinha (STOC' 20). In particular, for the Koml\'{o}s problem where vt21\|v_t\|_2\leq 1 for each tt, our algorithm achieves O~(1)\tilde{O}(1) discrepancy with high probability, improving upon the previous O~(n3/2)\tilde{O}(n^{3/2}) bound. For Tusn\'{a}dy's problem of minimizing the discrepancy of axis-aligned boxes, we obtain an O(logd+4T)O(\log^{d+4} T) bound for arbitrary distribution over points. Previous techniques only worked for product distributions and gave a weaker O(log2d+1T)O(\log^{2d+1} T) bound. We also consider the Banaszczyk setting, where given a symmetric convex body KK with Gaussian measure at least 1/21/2, our algorithm achieves O~(1)\tilde{O}(1) discrepancy with respect to the norm given by KK for input distributions with sub-exponential tails. Our key idea is to introduce a potential that also enforces constraints on how the discrepancy vector evolves, allowing us to maintain certain anti-concentration properties. For the Banaszczyk setting, we further enhance this potential by combining it with ideas from generic chaining. Finally, we also extend these results to the setting of online multi-color discrepancy

    A Gaussian Fixed Point Random Walk

    Get PDF
    In this note, we design a discrete random walk on the real line which takes steps 0,±10, \pm 1 (and one with steps in {±1,2}\{\pm 1, 2\}) where at least 96%96\% of the signs are ±1\pm 1 in expectation, and which has N(0,1)\mathcal{N}(0,1) as a stationary distribution. As an immediate corollary, we obtain an online version of Banaszczyk's discrepancy result for partial colorings and ±1,2\pm 1, 2 signings. Additionally, we recover linear time algorithms for logarithmic bounds for the Koml\'{o}s conjecture in an oblivious online setting.Comment: 8 page

    Prefix Discrepancy, Smoothed Analysis, and Combinatorial Vector Balancing

    Get PDF
    A well-known result of Banaszczyk in discrepancy theory concerns the prefix discrepancy problem (also known as the signed series problem): given a sequence of TT unit vectors in Rd\mathbb{R}^d, find ±\pm signs for each of them such that the signed sum vector along any prefix has a small \ell_\infty-norm? This problem is central to proving upper bounds for the Steinitz problem, and the popular Koml\'os problem is a special case where one is only concerned with the final signed sum vector instead of all prefixes. Banaszczyk gave an O(logd+logT)O(\sqrt{\log d+ \log T}) bound for the prefix discrepancy problem. We investigate the tightness of Banaszczyk's bound and consider natural generalizations of prefix discrepancy: We first consider a smoothed analysis setting, where a small amount of additive noise perturbs the input vectors. We show an exponential improvement in TT compared to Banaszczyk's bound. Using a primal-dual approach and a careful chaining argument, we show that one can achieve a bound of O(logd+log ⁣logT)O(\sqrt{\log d+ \log\!\log T}) with high probability in the smoothed setting. Moreover, this smoothed analysis bound is the best possible without further improvement on Banaszczyk's bound in the worst case. We also introduce a generalization of the prefix discrepancy problem where the discrepancy constraints correspond to paths on a DAG on TT vertices. We show that an analog of Banaszczyk's O(logd+logT)O(\sqrt{\log d+ \log T}) bound continues to hold in this setting for adversarially given unit vectors and that the logT\sqrt{\log T} factor is unavoidable for DAGs. We also show that the dependence on TT cannot be improved significantly in the smoothed case for DAGs. We conclude by exploring a more general notion of vector balancing, which we call combinatorial vector balancing. We obtain near-optimal bounds in this setting, up to poly-logarithmic factors.Comment: 22 pages. Appear in ITCS 202

    Internal states of model isotropic granular packings. III. Elastic properties

    Get PDF
    In this third and final paper of a series, elastic properties of numerically simulated isotropic packings of spherical beads assembled by different procedures and subjected to a varying confining pressure P are investigated. In addition P, which determines the stiffness of contacts by Hertz's law, elastic moduli are chiefly sensitive to the coordination number, the possible values of which are not necessarily correlated with the density. Comparisons of numerical and experimental results for glass beads in the 10kPa-10MPa range reveal similar differences between dry samples compacted by vibrations and lubricated packings. The greater stiffness of the latter, in spite of their lower density, can hence be attributed to a larger coordination number. Voigt and Reuss bounds bracket bulk modulus B accurately, but simple estimation schemes fail for shear modulus G, especially in poorly coordinated configurations under low P. Tenuous, fragile networks respond differently to changes in load direction, as compared to load intensity. The shear modulus, in poorly coordinated packings, tends to vary proportionally to the degree of force indeterminacy per unit volume. The elastic range extends to small strain intervals, in agreement with experimental observations. The origins of nonelastic response are discussed. We conclude that elastic moduli provide access to mechanically important information about coordination numbers, which escape direct measurement techniques, and indicate further perspectives.Comment: Published in Physical Review E 25 page

    3LP: a linear 3D-walking model including torso and swing dynamics

    Get PDF
    In this paper, we present a new model of biped locomotion which is composed of three linear pendulums (one per leg and one for the whole upper body) to describe stance, swing and torso dynamics. In addition to double support, this model has different actuation possibilities in the swing hip and stance ankle which could be widely used to produce different walking gaits. Without the need for numerical time-integration, closed-form solutions help finding periodic gaits which could be simply scaled in certain dimensions to modulate the motion online. Thanks to linearity properties, the proposed model can provide a computationally fast platform for model predictive controllers to predict the future and consider meaningful inequality constraints to ensure feasibility of the motion. Such property is coming from describing dynamics with joint torques directly and therefore, reflecting hardware limitations more precisely, even in the very abstract high level template space. The proposed model produces human-like torque and ground reaction force profiles and thus, compared to point-mass models, it is more promising for precise control of humanoid robots. Despite being linear and lacking many other features of human walking like CoM excursion, knee flexion and ground clearance, we show that the proposed model can predict one of the main optimality trends in human walking, i.e. nonlinear speed-frequency relationship. In this paper, we mainly focus on describing the model and its capabilities, comparing it with human data and calculating optimal human gait variables. Setting up control problems and advanced biomechanical analysis still remain for future works.Comment: Journal paper under revie
    corecore