3,954 research outputs found

    Truthful Facility Assignment with Resource Augmentation: An Exact Analysis of Serial Dictatorship

    Full text link
    We study the truthful facility assignment problem, where a set of agents with private most-preferred points on a metric space are assigned to facilities that lie on the metric space, under capacity constraints on the facilities. The goal is to produce such an assignment that minimizes the social cost, i.e., the total distance between the most-preferred points of the agents and their corresponding facilities in the assignment, under the constraint of truthfulness, which ensures that agents do not misreport their most-preferred points. We propose a resource augmentation framework, where a truthful mechanism is evaluated by its worst-case performance on an instance with enhanced facility capacities against the optimal mechanism on the same instance with the original capacities. We study a very well-known mechanism, Serial Dictatorship, and provide an exact analysis of its performance. Although Serial Dictatorship is a purely combinatorial mechanism, our analysis uses linear programming; a linear program expresses its greedy nature as well as the structure of the input, and finds the input instance that enforces the mechanism have its worst-case performance. Bounding the objective of the linear program using duality arguments allows us to compute tight bounds on the approximation ratio. Among other results, we prove that Serial Dictatorship has approximation ratio g/(g−2)g/(g-2) when the capacities are multiplied by any integer g≥3g \geq 3. Our results suggest that even a limited augmentation of the resources can have wondrous effects on the performance of the mechanism and in particular, the approximation ratio goes to 1 as the augmentation factor becomes large. We complement our results with bounds on the approximation ratio of Random Serial Dictatorship, the randomized version of Serial Dictatorship, when there is no resource augmentation

    Collaborative Delivery with Energy-Constrained Mobile Robots

    Full text link
    We consider the problem of collectively delivering some message from a specified source to a designated target location in a graph, using multiple mobile agents. Each agent has a limited energy which constrains the distance it can move. Hence multiple agents need to collaborate to move the message, each agent handing over the message to the next agent to carry it forward. Given the positions of the agents in the graph and their respective budgets, the problem of finding a feasible movement schedule for the agents can be challenging. We consider two variants of the problem: in non-returning delivery, the agents can stop anywhere; whereas in returning delivery, each agent needs to return to its starting location, a variant which has not been studied before. We first provide a polynomial-time algorithm for returning delivery on trees, which is in contrast to the known (weak) NP-hardness of the non-returning version. In addition, we give resource-augmented algorithms for returning delivery in general graphs. Finally, we give tight lower bounds on the required resource augmentation for both variants of the problem. In this sense, our results close the gap left by previous research.Comment: 19 pages. An extended abstract of this paper was published at the 23rd International Colloquium on Structural Information and Communication Complexity 2016, SIROCCO'1

    Serve or Skip: The Power of Rejection in Online Bottleneck Matching

    Get PDF
    We consider the online matching problem, where n server-vertices lie in a metric space and n request-vertices that arrive over time each must immediately be permanently assigned to a server-vertex.We focus on the egalitarian bottleneck objective, where the goal is to minimize the maximum distance between any request and its server. It has been demonstrated that while there are effective algorithms for the utilitarian objective (minimizing total cost) in the resource augmentation setting where the offline adversary has half the resources, these are not effective for the egalitarian objective. Thus, we propose a new Serve-or-Skip bicriteria analysis model, where the online algorithm may reject or skip up to a specified number of requests, and propose two greedy algorithms: GRI NN(t) and GRIN(t) . We show that the Serve-or-Skip model of resource augmentation analysis can essentially simulate the doubled-server capacity model, and then examine the performance of GRI NN(t) and GRIN(t)

    Online Non-Preemptive Scheduling to Minimize Maximum Weighted Flow-Time on Related Machines

    Get PDF
    We consider the problem of scheduling jobs to minimize the maximum weighted flow-time on a set of related machines. When jobs can be preempted this problem is well-understood; for example, there exists a constant competitive algorithm using speed augmentation. When jobs must be scheduled non-preemptively, only hardness results are known. In this paper, we present the first online guarantees for the non-preemptive variant. We present the first constant competitive algorithm for minimizing the maximum weighted flow-time on related machines by relaxing the problem and assuming that the online algorithm can reject a small fraction of the total weight of jobs. This is essentially the best result possible given the strong lower bounds on the non-preemptive problem without rejection
    • …
    corecore