3,349 research outputs found

    Filtering Random Graph Processes Over Random Time-Varying Graphs

    Get PDF
    Graph filters play a key role in processing the graph spectra of signals supported on the vertices of a graph. However, despite their widespread use, graph filters have been analyzed only in the deterministic setting, ignoring the impact of stochastic- ity in both the graph topology as well as the signal itself. To bridge this gap, we examine the statistical behavior of the two key filter types, finite impulse response (FIR) and autoregressive moving average (ARMA) graph filters, when operating on random time- varying graph signals (or random graph processes) over random time-varying graphs. Our analysis shows that (i) in expectation, the filters behave as the same deterministic filters operating on a deterministic graph, being the expected graph, having as input signal a deterministic signal, being the expected signal, and (ii) there are meaningful upper bounds for the variance of the filter output. We conclude the paper by proposing two novel ways of exploiting randomness to improve (joint graph-time) noise cancellation, as well as to reduce the computational complexity of graph filtering. As demonstrated by numerical results, these methods outperform the disjoint average and denoise algorithm, and yield a (up to) four times complexity redution, with very little difference from the optimal solution

    A dynamic network model with persistent links and node-specific latent variables, with an application to the interbank market

    Get PDF
    We propose a dynamic network model where two mechanisms control the probability of a link between two nodes: (i) the existence or absence of this link in the past, and (ii) node-specific latent variables (dynamic fitnesses) describing the propensity of each node to create links. Assuming a Markov dynamics for both mechanisms, we propose an Expectation-Maximization algorithm for model estimation and inference of the latent variables. The estimated parameters and fitnesses can be used to forecast the presence of a link in the future. We apply our methodology to the e-MID interbank network for which the two linkage mechanisms are associated with two different trading behaviors in the process of network formation, namely preferential trading and trading driven by node-specific characteristics. The empirical results allow to recognise preferential lending in the interbank market and indicate how a method that does not account for time-varying network topologies tends to overestimate preferential linkage.Comment: 19 pages, 6 figure

    Online Machine Learning for Graph Topology Identification from Multiple Time Series

    Get PDF
    High dimensional time series data are observed in many complex systems. In networked data, some of the time series are influenced by other time series. Identifying these relations encoded in a graph structure or topology among the time series is of paramount interest in certain applications since the identified structure can provide insights about the underlying system and can assist in inference tasks. In practice, the underlying topology is usually sparse, that is, not all the participating time series in influence each other. The goal of this dissertation pertains to study the problem of sparse topology identification under various settings. Topology identification from time series is a challenging task. The first major challenge in topology identification is that the assumption of static topology does not hold always in practice since most of the practical systems are evolving with time. For instance, in econometrics, social networks, etc., the relations among the time series can change over time. Identifying the topologies of such dynamic networks is a major challenge. The second major challenge is that in most practical scenarios, the data is not available at once - it is coming in a streaming fashion. Hence, batch approaches are either not applicable or they become computationally expensive since a batch algorithm is needed to be run when a new datum becomes available. The third challenge is that the multi-dimensional time series data can contain missing values due faulty sensors, privacy and security reasons, or due to saving energy. We address the aforementioned challenges in this dissertation by proposing online/-batch algorithms to solve the problem of time-varying topology identification. A model based on vector autoregressive (VAR) process is adopted initially. The parameters of the VAR model reveal the topology of the underlying network. First, two online algorithms are proposed for the case of streaming data. Next, using the same VAR model, two online algorithms under the framework of online optimization are presented to track the time-varying topologies. To evaluate the performance of propose online algorithms, we show that both the proposed algorithms incur a sublinear static regret. To characterize the performance theoretically in time-varying scenarios, a bound on the dynamic regret for one of the proposed algorithms (TIRSO) is derived. Next, using a structural equation model (SEM) for topology identification, an online algorithm for tracking time-varying topologies is proposed, and a bound on the dynamic regret is also derived for the proposed algorithm. Moreover, using a non-stationary VAR model, an algorithm for dynamic topology identification and breakpoint detection is also proposed, where the notion of local structural breakpoint is introduced to accommodate the concept of breakpoint where instead of the whole topology, only a few edges vary. Finally, the problem of tracking VAR-based time-varying topologies with missing data is investigated. Online algorithms are proposed where the joint signal and topology estimation is carried out. Dynamic regret analysis is also presented for the proposed algorithm. For all the previously mentioned works, simulation tests about the proposed algorithms are also presented and discussed in this dissertation. The numerical results of the proposed algorithms corroborate with the theoretical analysis presented in this dissertation.publishedVersio

    Towards Developing a Travel Time Forecasting Model for Location-Based Services: a Review

    Get PDF
    Travel time forecasting models have been studied intensively as a subject of Intelligent Transportation Systems (ITS), particularly in the topics of advanced traffic management systems (ATMS), advanced traveler information systems (ATIS), and commercial vehicle operations (CVO). While the concept of travel time forecasting is relatively simple, it involves a notably complicated task of implementing even a simple model. Thus, existing forecasting models are diverse in their original formulations, including mathematical optimizations, computer simulations, statistics, and artificial intelligence. A comprehensive literature review, therefore, would assist in formulating a more reliable travel time forecasting model. On the other hand, geographic information systems (GIS) technologies primarily provide the capability of spatial and network database management, as well as technology management. Thus, GIS could support travel time forecasting in various ways by providing useful functions to both the managers in transportation management and information centers (TMICs) and the external users. Thus, in developing a travel time forecasting model, GIS could play important roles in the management of real-time and historical traffic data, the integration of multiple subsystems, and the assistance of information management. The purpose of this paper is to review various models and technologies that have been used for developing a travel time forecasting model with geographic information systems (GIS) technologies. Reviewed forecasting models in this paper include historical profile approaches, time series models, nonparametric regression models, traffic simulations, dynamic traffic assignment models, and neural networks. The potential roles and functions of GIS in travel time forecasting are also discussed.

    Online Joint Topology Identification and Signal Estimation with Inexact Proximal Online Gradient Descent

    Full text link
    Identifying the topology that underlies a set of time series is useful for tasks such as prediction, denoising, and data completion. Vector autoregressive (VAR) model based topologies capture dependencies among time series, and are often inferred from observed spatio-temporal data. When the data are affected by noise and/or missing samples, the tasks of topology identification and signal recovery (reconstruction) have to be performed jointly. Additional challenges arise when i) the underlying topology is time-varying, ii) data become available sequentially, and iii) no delay is tolerated. To overcome these challenges, this paper proposes two online algorithms to estimate the VAR model-based topologies. The proposed algorithms have constant complexity per iteration, which makes them interesting for big data scenarios. They also enjoy complementary merits in terms of complexity and performance. A performance guarantee is derived for one of the algorithms in the form of a dynamic regret bound. Numerical tests are also presented, showcasing the ability of the proposed algorithms to track the time-varying topologies with missing data in an online fashion.Comment: 14 pages including supplementary material, 2 figures, submitted to IEEE Transactions on Signal Processin
    • …
    corecore