9,750 research outputs found

    Learning the dynamics of articulated tracked vehicles

    Get PDF
    In this work, we present a Bayesian non-parametric approach to model the motion control of ATVs. The motion control model is based on a Dirichlet Process-Gaussian Process (DP-GP) mixture model. The DP-GP mixture model provides a flexible representation of patterns of control manoeuvres along trajectories of different lengths and discretizations. The model also estimates the number of patterns, sufficient for modeling the dynamics of the ATV

    A Bayesian Ensemble Regression Framework on the Angry Birds Game

    Full text link
    An ensemble inference mechanism is proposed on the Angry Birds domain. It is based on an efficient tree structure for encoding and representing game screenshots, where it exploits its enhanced modeling capability. This has the advantage to establish an informative feature space and modify the task of game playing to a regression analysis problem. To this direction, we assume that each type of object material and bird pair has its own Bayesian linear regression model. In this way, a multi-model regression framework is designed that simultaneously calculates the conditional expectations of several objects and makes a target decision through an ensemble of regression models. Learning procedure is performed according to an online estimation strategy for the model parameters. We provide comparative experimental results on several game levels that empirically illustrate the efficiency of the proposed methodology.Comment: Angry Birds AI Symposium, ECAI 201

    Cautious NMPC with Gaussian Process Dynamics for Autonomous Miniature Race Cars

    Full text link
    This paper presents an adaptive high performance control method for autonomous miniature race cars. Racing dynamics are notoriously hard to model from first principles, which is addressed by means of a cautious nonlinear model predictive control (NMPC) approach that learns to improve its dynamics model from data and safely increases racing performance. The approach makes use of a Gaussian Process (GP) and takes residual model uncertainty into account through a chance constrained formulation. We present a sparse GP approximation with dynamically adjusting inducing inputs, enabling a real-time implementable controller. The formulation is demonstrated in simulations, which show significant improvement with respect to both lap time and constraint satisfaction compared to an NMPC without model learning

    GP-Localize: Persistent Mobile Robot Localization using Online Sparse Gaussian Process Observation Model

    Full text link
    Central to robot exploration and mapping is the task of persistent localization in environmental fields characterized by spatially correlated measurements. This paper presents a Gaussian process localization (GP-Localize) algorithm that, in contrast to existing works, can exploit the spatially correlated field measurements taken during a robot's exploration (instead of relying on prior training data) for efficiently and scalably learning the GP observation model online through our proposed novel online sparse GP. As a result, GP-Localize is capable of achieving constant time and memory (i.e., independent of the size of the data) per filtering step, which demonstrates the practical feasibility of using GPs for persistent robot localization and autonomy. Empirical evaluation via simulated experiments with real-world datasets and a real robot experiment shows that GP-Localize outperforms existing GP localization algorithms.Comment: 28th AAAI Conference on Artificial Intelligence (AAAI 2014), Extended version with proofs, 10 page

    Online semi-parametric learning for inverse dynamics modeling

    Full text link
    This paper presents a semi-parametric algorithm for online learning of a robot inverse dynamics model. It combines the strength of the parametric and non-parametric modeling. The former exploits the rigid body dynamics equa- tion, while the latter exploits a suitable kernel function. We provide an extensive comparison with other methods from the literature using real data from the iCub humanoid robot. In doing so we also compare two different techniques, namely cross validation and marginal likelihood optimization, for estimating the hyperparameters of the kernel function
    • …
    corecore