328 research outputs found

    Adaptive Online Sequential ELM for Concept Drift Tackling

    Get PDF
    A machine learning method needs to adapt to over time changes in the environment. Such changes are known as concept drift. In this paper, we propose concept drift tackling method as an enhancement of Online Sequential Extreme Learning Machine (OS-ELM) and Constructive Enhancement OS-ELM (CEOS-ELM) by adding adaptive capability for classification and regression problem. The scheme is named as adaptive OS-ELM (AOS-ELM). It is a single classifier scheme that works well to handle real drift, virtual drift, and hybrid drift. The AOS-ELM also works well for sudden drift and recurrent context change type. The scheme is a simple unified method implemented in simple lines of code. We evaluated AOS-ELM on regression and classification problem by using concept drift public data set (SEA and STAGGER) and other public data sets such as MNIST, USPS, and IDS. Experiments show that our method gives higher kappa value compared to the multiclassifier ELM ensemble. Even though AOS-ELM in practice does not need hidden nodes increase, we address some issues related to the increasing of the hidden nodes such as error condition and rank values. We propose taking the rank of the pseudoinverse matrix as an indicator parameter to detect underfitting condition.Comment: Hindawi Publishing. Computational Intelligence and Neuroscience Volume 2016 (2016), Article ID 8091267, 17 pages Received 29 January 2016, Accepted 17 May 2016. Special Issue on "Advances in Neural Networks and Hybrid-Metaheuristics: Theory, Algorithms, and Novel Engineering Applications". Academic Editor: Stefan Hauf

    Sparse least squares support vector regression for nonstationary systems

    Get PDF
    A new adaptive sparse least squares support vector regression algorithm, referred to as SLSSVR has been introduced for the adaptive modeling of nonstationary systems. Using a sliding window of recent data set of size N to track t he non-stationary characteristics of the incoming data, our adaptive model is initially formulated based on least squares support vector regression with forgetting factor (without bias term). In order to obtain a sparse model in which some parameters are exactly zeros, a l 1 penalty was applied in parameter estimation in the dual problem. Furthermore we exploit the fact that since the associated system/kernel matrix in positive definite, the dual solution of least squares support vector machine without bias term, can be solved iteratively with guaranteed convergence. Furthermore since the models between two consecutive time steps there are (N-1) shared kernels/parameters, the online solution can be obtained efficiently using coordinate descent algorithm in the form of Gauss-Seidel algorithm with minimal number of iterations. This allows a very sparse model per time step to be obtained very efficiently, avoiding expensive matrix inversion. The real stock market dataset and simulated examples have shown that the proposed approaches can lead to superior performances in comparison with the linear recursive least algorithm and a number of online non-linear approaches in terms of modelling performance and model size

    WOS-ELM-Based Double Redundancy Fault Diagnosis and Reconstruction for Aeroengine Sensor

    Get PDF
    In order to diagnose sensor fault of aeroengine more quickly and accurately, a double redundancy diagnosis approach based on Weighted Online Sequential Extreme Learning Machine (WOS-ELM) is proposed in this paper. WOS-ELM, which assigns different weights to old and new data, implements weighted dealing with the input data to get more precise training models. The proposed approach contains two series of diagnosis models, that is, spatial model and time model. The application of double redundancy based on spatial and time redundancy can in real time detect the hard fault and soft fault much earlier. The trouble-free or reconstructed time redundancy model can be utilized to update the training model and make it be consistent with the practical operation mode of the aeroengine. Simulation results illustrate the effectiveness and feasibility of the proposed method

    Trip Travel Time Forecasting Based on Selective Forgetting Extreme Learning Machine

    Get PDF
    Travel time estimation on road networks is a valuable traffic metric. In this paper, we propose a machine learning based method for trip travel time estimation in road networks. The method uses the historical trip information extracted from taxis trace data as the training data. An optimized online sequential extreme machine, selective forgetting extreme learning machine, is adopted to make the prediction. Its selective forgetting learning ability enables the prediction algorithm to adapt to trip conditions changes well. Experimental results using real-life taxis trace data show that the forecasting model provides an effective and practical way for the travel time forecasting
    • …
    corecore