85 research outputs found

    Serial-batch scheduling – the special case of laser-cutting machines

    Get PDF
    The dissertation deals with a problem in the field of short-term production planning, namely the scheduling of laser-cutting machines. The object of decision is the grouping of production orders (batching) and the sequencing of these order groups on one or more machines (scheduling). This problem is also known in the literature as "batch scheduling problem" and belongs to the class of combinatorial optimization problems due to the interdependencies between the batching and the scheduling decisions. The concepts and methods used are mainly from production planning, operations research and machine learning

    Minimizing the sum of flow times with batching and delivery in a supply chain

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.The aim of this thesis is to study one of the classical scheduling objectives that is of minimizing the sum of flow times, in the context of a supply chain network. We consider the situation that a supplier schedules a set of jobs for delivery in batches to several manufacturers, who in tum have to schedule and deliver jobs in batches to several customers. The individual problem from the viewpoint of supplier and manufacturers will be considered separately. The decision problem faced by the supplier is that of minimizing the sum of flow time and delivery cost of a set of jobs to be processed on a single machine for delivery in batches to manufacturers. The problem from the viewpoint of manufacturer is similar to the supplier's problem and the only difference is that the scheduling, batching and delivery decisions made by the supplier define a release date for each job, before which the manufacturer cannot start the processing of that job. Also a combined problem in the light of cooperation between the supplier and manufacturer will be considered. The objective of the combined problem is to find the best scheduling, batching, and delivery decisions that benefit the entire system including the supplier and manufacturer. Structural properties of each problem are investigated and used to devise a branch and bound solution scheme. Computational experience shows significant improvements over existing algorithms and also shows that cooperation between a supplier and a manufacturer reduces the total system cost of up to 12.35%, while theoretically the reduction of up to 20% can be achieved for special cases

    Deterministic Assembly Scheduling Problems: A Review and Classification of Concurrent-Type Scheduling Models and Solution Procedures

    Get PDF
    Many activities in industry and services require the scheduling of tasks that can be concurrently executed, the most clear example being perhaps the assembly of products carried out in manufacturing. Although numerous scientific contributions have been produced on this area over the last decades, the wide extension of the problems covered and the lack of a unified approach have lead to a situation where the state of the art in the field is unclear, which in turn hinders new research and makes translating the scientific knowledge into practice difficult. In this paper we propose a unified notation for assembly scheduling models that encompass all concurrent-type scheduling problems. Using this notation, the existing contributions are reviewed and classified into a single framework, so a comprehensive, unified picture of the field is obtained. In addition, a number of conclusions regarding the state of the art in the topic are presented, as well as some opportunities for future research.Ministerio de Ciencia e Innovación español DPI2016-80750-

    Constructive heuristics for the unrelated parallel machines scheduling problem with machine eligibility and setup times

    Get PDF
    This work considers a scheduling problem identified in a factory producing customised Heating, Ventilation and Air Conditioning (HVAC) equipment. More specifically, the metal folding section is modelled as unrelated parallel machines with machine eligibility and sequence-dependent setup times. The objective under consideration is the minimisation of the total tardiness. The problem is known to be NP-hard so approximate methods are needed to solve real-size instances. In order to embed the scheduling procedure into a decision support system providing high-quality solutions in nearly real time, the goal of this paper is to develop fast, efficient constructive heuristics for the problem. Due to the lack of methods for this specific problem, some existing heuristics and one metaheuristic are selected from related problems and adapted. In addition, a set of heuristics with novel repair and improvement phases are proposed. The performance of the methods adapted and the proposals are compared with the optimal/approximate solutions obtained by a solver for an MILP in two sets of instances with small and medium sizes. Additionally, big-size instances (representing more realistic cases for our company) have been solved using the proposed constructive heuristics, providing efficient solutions in negligible computational times. Even if the adaptation of heuristics performs reasonably well, these are outperformed by the new heuristic proposed in this paper. In addition, when the new heuristic is embedded in the metaheuristic adapted from a related the problem, the results obtained are excellent in terms of the quality of the solution, even if the computational effort is somewhat higher.Ministerio de Ciencia en Innovación. “PROMISE

    Four decades of research on the open-shop scheduling problem to minimize the makespan

    Full text link
    One of the basic scheduling problems, the open-shop scheduling problem has a broad range of applications across different sectors. The problem concerns scheduling a set of jobs, each of which has a set of operations, on a set of different machines. Each machine can process at most one operation at a time and the job processing order on the machines is immaterial, i.e., it has no implication for the scheduling outcome. The aim is to determine a schedule, i.e., the completion times of the operations processed on the machines, such that a performance criterion is optimized. While research on the problem dates back to the 1970s, there have been reviving interests in the computational complexity of variants of the problem and solution methodologies in the past few years. Aiming to provide a complete road map for future research on the open-shop scheduling problem, we present an up-to-date and comprehensive review of studies on the problem that focuses on minimizing the makespan, and discuss potential research opportunities

    Energy-aware coordination of machine scheduling and support device recharging in production systems

    Get PDF
    Electricity generation from renewable energy sources is crucial for achieving climate targets, including greenhouse gas neutrality. Germany has made significant progress in increasing renewable energy generation. However, feed-in management actions have led to losses of renewable electricity in the past years, primarily from wind energy. These actions aim to maintain grid stability but result in excess renewable energy that goes unused. The lost electricity could have powered a multitude of households and saved CO2 emissions. Moreover, feed-in management actions incurred compensation claims of around 807 million Euros in 2021. Wind-abundant regions like Schleswig-Holstein are particularly affected by these actions, resulting in substantial losses of renewable electricity production. Expanding the power grid infrastructure is a costly and time-consuming solution to avoid feed-in management actions. An alternative approach is to increase local electricity consumption during peak renewable generation periods, which can help balance electricity supply and demand and reduce feed-in management actions. The dissertation focuses on energy-aware manufacturing decision-making, exploring ways to counteract feed-in management actions by increasing local industrial consumption during renewable generation peaks. The research proposes to guide production management decisions, synchronizing a company's energy consumption profile with renewable energy availability for more environmentally friendly production and improved grid stability

    Minimizing the sum of flow times with batching and delivery in a supply chain

    Get PDF
    The aim of this thesis is to study one of the classical scheduling objectives that is of minimizing the sum of flow times, in the context of a supply chain network. We consider the situation that a supplier schedules a set of jobs for delivery in batches to several manufacturers, who in tum have to schedule and deliver jobs in batches to several customers. The individual problem from the viewpoint of supplier and manufacturers will be considered separately. The decision problem faced by the supplier is that of minimizing the sum of flow time and delivery cost of a set of jobs to be processed on a single machine for delivery in batches to manufacturers. The problem from the viewpoint of manufacturer is similar to the supplier's problem and the only difference is that the scheduling, batching and delivery decisions made by the supplier define a release date for each job, before which the manufacturer cannot start the processing of that job. Also a combined problem in the light of cooperation between the supplier and manufacturer will be considered. The objective of the combined problem is to find the best scheduling, batching, and delivery decisions that benefit the entire system including the supplier and manufacturer. Structural properties of each problem are investigated and used to devise a branch and bound solution scheme. Computational experience shows significant improvements over existing algorithms and also shows that cooperation between a supplier and a manufacturer reduces the total system cost of up to 12.35%, while theoretically the reduction of up to 20% can be achieved for special cases.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Production Scheduling

    Get PDF
    Generally speaking, scheduling is the procedure of mapping a set of tasks or jobs (studied objects) to a set of target resources efficiently. More specifically, as a part of a larger planning and scheduling process, production scheduling is essential for the proper functioning of a manufacturing enterprise. This book presents ten chapters divided into five sections. Section 1 discusses rescheduling strategies, policies, and methods for production scheduling. Section 2 presents two chapters about flow shop scheduling. Section 3 describes heuristic and metaheuristic methods for treating the scheduling problem in an efficient manner. In addition, two test cases are presented in Section 4. The first uses simulation, while the second shows a real implementation of a production scheduling system. Finally, Section 5 presents some modeling strategies for building production scheduling systems. This book will be of interest to those working in the decision-making branches of production, in various operational research areas, as well as computational methods design. People from a diverse background ranging from academia and research to those working in industry, can take advantage of this volume

    Advances and Novel Approaches in Discrete Optimization

    Get PDF
    Discrete optimization is an important area of Applied Mathematics with a broad spectrum of applications in many fields. This book results from a Special Issue in the journal Mathematics entitled ‘Advances and Novel Approaches in Discrete Optimization’. It contains 17 articles covering a broad spectrum of subjects which have been selected from 43 submitted papers after a thorough refereeing process. Among other topics, it includes seven articles dealing with scheduling problems, e.g., online scheduling, batching, dual and inverse scheduling problems, or uncertain scheduling problems. Other subjects are graphs and applications, evacuation planning, the max-cut problem, capacitated lot-sizing, and packing algorithms
    corecore