180 research outputs found

    Sequence modelling for e-commerce

    Get PDF

    Multimodal sentiment analysis in real-life videos

    Get PDF
    This thesis extends the emerging field of multimodal sentiment analysis of real-life videos, taking two components into consideration: the emotion and the emotion's target. The emotion component of media is traditionally represented as a segment-based intensity model of emotion classes. This representation is replaced here by a value- and time-continuous view. Adjacent research fields, such as affective computing, have largely neglected the linguistic information available from automatic transcripts of audio-video material. As is demonstrated here, this text modality is well-suited for time- and value-continuous prediction. Moreover, source-specific problems, such as trustworthiness, have been largely unexplored so far. This work examines perceived trustworthiness of the source, and its quantification, in user-generated video data and presents a possible modelling path. Furthermore, the transfer between the continuous and discrete emotion representations is explored in order to summarise the emotional context at a segment level. The other component deals with the target of the emotion, for example, the topic the speaker is addressing. Emotion targets in a video dataset can, as is shown here, be coherently extracted based on automatic transcripts without limiting a priori parameters, such as the expected number of targets. Furthermore, alternatives to purely linguistic investigation in predicting targets, such as knowledge-bases and multimodal systems, are investigated. A new dataset is designed for this investigation, and, in conjunction with proposed novel deep neural networks, extensive experiments are conducted to explore the components described above. The developed systems show robust prediction results and demonstrate strengths of the respective modalities, feature sets, and modelling techniques. Finally, foundations are laid for cross-modal information prediction systems with applications to the correction of corrupted in-the-wild signals from real-life videos

    Analyzing Granger causality in climate data with time series classification methods

    Get PDF
    Attribution studies in climate science aim for scientifically ascertaining the influence of climatic variations on natural or anthropogenic factors. Many of those studies adopt the concept of Granger causality to infer statistical cause-effect relationships, while utilizing traditional autoregressive models. In this article, we investigate the potential of state-of-the-art time series classification techniques to enhance causal inference in climate science. We conduct a comparative experimental study of different types of algorithms on a large test suite that comprises a unique collection of datasets from the area of climate-vegetation dynamics. The results indicate that specialized time series classification methods are able to improve existing inference procedures. Substantial differences are observed among the methods that were tested

    Data-efficient methods for dialogue systems

    Get PDF
    Conversational User Interface (CUI) has become ubiquitous in everyday life, in consumer-focused products like Siri and Alexa or more business-oriented customer support automation solutions. Deep learning underlies many recent breakthroughs in dialogue systems but requires very large amounts of training data, often annotated by experts — and this dramatically increases the cost of deploying such systems in production setups and reduces their flexibility as software products. Trained with smaller data, these methods end up severely lacking robustness to various phenomena of spoken language (e.g. disfluencies), out-of-domain input, and often just have too little generalisation power to other tasks and domains. In this thesis, we address the above issues by introducing a series of methods for bootstrapping robust dialogue systems from minimal data. Firstly, we study two orthogonal approaches to dialogue: a linguistically informed model (DyLan) and a machine learning-based one (MemN2N) — from the data efficiency perspective, i.e. their potential to generalise from minimal data and robustness to natural spontaneous input. We outline the steps to obtain data-efficient solutions with either approach and proceed with the neural models for the rest of the thesis. We then introduce the core contributions of this thesis, two data-efficient models for dialogue response generation: the Dialogue Knowledge Transfer Network (DiKTNet) based on transferable latent dialogue representations, and the Generative-Retrieval Transformer (GRTr) combining response generation logic with a retrieval mechanism as the fallback. GRTr ranked first at the Dialog System Technology Challenge 8 Fast Domain Adaptation task. Next, we the problem of training robust neural models from minimal data. As such, we look at robustness to disfluencies and propose a multitask LSTM-based model for domain-general disfluency detection. We then go on to explore robustness to anomalous, or out-of-domain (OOD) input. We address this problem by (1) presenting Turn Dropout, a data-augmentation technique facilitating training for anomalous input only using in-domain data, and (2) introducing VHCN and AE-HCN, autoencoder-augmented models for efficient training with turn dropout based on the Hybrid Code Networks (HCN) model family. With all the above work addressing goal-oriented dialogue, our final contribution in this thesis focuses on social dialogue where the main objective is maintaining natural, coherent, and engaging conversation for as long as possible. We introduce a neural model for response ranking in social conversation used in Alana, the 3rd place winner in the Amazon Alexa Prize 2017 and 2018. For our model, we employ a novel technique of predicting the dialogue length as the main objective for ranking. We show that this approach matches the performance of its counterpart based on the conventional, human rating-based objective — and surpasses it given more raw dialogue transcripts, thus reducing the dependence on costly and cumbersome dialogue annotations.EPSRC project BABBLE (grant EP/M01553X/1)

    An Evaluation of Deep Learning-Based Object Identification

    Get PDF
    Identification of instances of semantic objects of a particular class, which has been heavily incorporated in people's lives through applications like autonomous driving and security monitoring, is one of the most crucial and challenging areas of computer vision. Recent developments in deep learning networks for detection have improved object detector accuracy. To provide a detailed review of the current state of object detection pipelines, we begin by analyzing the methodologies employed by classical detection models and providing the benchmark datasets used in this study. After that, we'll have a look at the one- and two-stage detectors in detail, before concluding with a summary of several object detection approaches. In addition, we provide a list of both old and new apps. It's not just a single branch of object detection that is examined. Finally, we look at how to utilize various object detection algorithms to create a system that is both efficient and effective. and identify a number of emerging patterns in order to better understand the using the most recent algorithms and doing more study

    Natural Language Processing: Emerging Neural Approaches and Applications

    Get PDF
    This Special Issue highlights the most recent research being carried out in the NLP field to discuss relative open issues, with a particular focus on both emerging approaches for language learning, understanding, production, and grounding interactively or autonomously from data in cognitive and neural systems, as well as on their potential or real applications in different domains
    • …
    corecore