715 research outputs found

    Prophet Inequalities with Limited Information

    Full text link
    In the classical prophet inequality, a gambler observes a sequence of stochastic rewards V1,...,VnV_1,...,V_n and must decide, for each reward ViV_i, whether to keep it and stop the game or to forfeit the reward forever and reveal the next value ViV_i. The gambler's goal is to obtain a constant fraction of the expected reward that the optimal offline algorithm would get. Recently, prophet inequalities have been generalized to settings where the gambler can choose kk items, and, more generally, where he can choose any independent set in a matroid. However, all the existing algorithms require the gambler to know the distribution from which the rewards V1,...,VnV_1,...,V_n are drawn. The assumption that the gambler knows the distribution from which V1,...,VnV_1,...,V_n are drawn is very strong. Instead, we work with the much simpler assumption that the gambler only knows a few samples from this distribution. We construct the first single-sample prophet inequalities for many settings of interest, whose guarantees all match the best possible asymptotically, \emph{even with full knowledge of the distribution}. Specifically, we provide a novel single-sample algorithm when the gambler can choose any kk elements whose analysis is based on random walks with limited correlation. In addition, we provide a black-box method for converting specific types of solutions to the related \emph{secretary problem} to single-sample prophet inequalities, and apply it to several existing algorithms. Finally, we provide a constant-sample prophet inequality for constant-degree bipartite matchings. We apply these results to design the first posted-price and multi-dimensional auction mechanisms with limited information in settings with asymmetric bidders

    Online Independent Set Beyond the Worst-Case: Secretaries, Prophets, and Periods

    Full text link
    We investigate online algorithms for maximum (weight) independent set on graph classes with bounded inductive independence number like, e.g., interval and disk graphs with applications to, e.g., task scheduling and spectrum allocation. In the online setting, it is assumed that nodes of an unknown graph arrive one by one over time. An online algorithm has to decide whether an arriving node should be included into the independent set. Unfortunately, this natural and practically relevant online problem cannot be studied in a meaningful way within a classical competitive analysis as the competitive ratio on worst-case input sequences is lower bounded by Ω(n)\Omega(n). As a worst-case analysis is pointless, we study online independent set in a stochastic analysis. Instead of focussing on a particular stochastic input model, we present a generic sampling approach that enables us to devise online algorithms achieving performance guarantees for a variety of input models. In particular, our analysis covers stochastic input models like the secretary model, in which an adversarial graph is presented in random order, and the prophet-inequality model, in which a randomly generated graph is presented in adversarial order. Our sampling approach bridges thus between stochastic input models of quite different nature. In addition, we show that our approach can be applied to a practically motivated admission control setting. Our sampling approach yields an online algorithm for maximum independent set with competitive ratio O(ρ2)O(\rho^2) with respect to all of the mentioned stochastic input models. for graph classes with inductive independence number ρ\rho. The approach can be extended towards maximum-weight independent set by losing only a factor of O(logn)O(\log n) in the competitive ratio with nn denoting the (expected) number of nodes

    Buyback Problem - Approximate matroid intersection with cancellation costs

    Full text link
    In the buyback problem, an algorithm observes a sequence of bids and must decide whether to accept each bid at the moment it arrives, subject to some constraints on the set of accepted bids. Decisions to reject bids are irrevocable, whereas decisions to accept bids may be canceled at a cost that is a fixed fraction of the bid value. Previous to our work, deterministic and randomized algorithms were known when the constraint is a matroid constraint. We extend this and give a deterministic algorithm for the case when the constraint is an intersection of kk matroid constraints. We further prove a matching lower bound on the competitive ratio for this problem and extend our results to arbitrary downward closed set systems. This problem has applications to banner advertisement, semi-streaming, routing, load balancing and other problems where preemption or cancellation of previous allocations is allowed
    corecore