631 research outputs found

    Real-time object detection using monocular vision for low-cost automotive sensing systems

    Get PDF
    This work addresses the problem of real-time object detection in automotive environments using monocular vision. The focus is on real-time feature detection, tracking, depth estimation using monocular vision and finally, object detection by fusing visual saliency and depth information. Firstly, a novel feature detection approach is proposed for extracting stable and dense features even in images with very low signal-to-noise ratio. This methodology is based on image gradients, which are redefined to take account of noise as part of their mathematical model. Each gradient is based on a vector connecting a negative to a positive intensity centroid, where both centroids are symmetric about the centre of the area for which the gradient is calculated. Multiple gradient vectors define a feature with its strength being proportional to the underlying gradient vector magnitude. The evaluation of the Dense Gradient Features (DeGraF) shows superior performance over other contemporary detectors in terms of keypoint density, tracking accuracy, illumination invariance, rotation invariance, noise resistance and detection time. The DeGraF features form the basis for two new approaches that perform dense 3D reconstruction from a single vehicle-mounted camera. The first approach tracks DeGraF features in real-time while performing image stabilisation with minimal computational cost. This means that despite camera vibration the algorithm can accurately predict the real-world coordinates of each image pixel in real-time by comparing each motion-vector to the ego-motion vector of the vehicle. The performance of this approach has been compared to different 3D reconstruction methods in order to determine their accuracy, depth-map density, noise-resistance and computational complexity. The second approach proposes the use of local frequency analysis of i ii gradient features for estimating relative depth. This novel method is based on the fact that DeGraF gradients can accurately measure local image variance with subpixel accuracy. It is shown that the local frequency by which the centroid oscillates around the gradient window centre is proportional to the depth of each gradient centroid in the real world. The lower computational complexity of this methodology comes at the expense of depth map accuracy as the camera velocity increases, but it is at least five times faster than the other evaluated approaches. This work also proposes a novel technique for deriving visual saliency maps by using Division of Gaussians (DIVoG). In this context, saliency maps express the difference of each image pixel is to its surrounding pixels across multiple pyramid levels. This approach is shown to be both fast and accurate when evaluated against other state-of-the-art approaches. Subsequently, the saliency information is combined with depth information to identify salient regions close to the host vehicle. The fused map allows faster detection of high-risk areas where obstacles are likely to exist. As a result, existing object detection algorithms, such as the Histogram of Oriented Gradients (HOG) can execute at least five times faster. In conclusion, through a step-wise approach computationally-expensive algorithms have been optimised or replaced by novel methodologies to produce a fast object detection system that is aligned to the requirements of the automotive domain

    Object and feature based modelling of attention in meeting and surveillance videos

    Get PDF
    MPhilThe aim of the thesis is to create and validate models of visual attention. To this extent, a novel unsupervised object detection and tracking framework has been developed by the author. It is demonstrated on people, faces and moving objects and the output is integrated in modelling of visual attention. The proposed approach integrates several types of modules in initialisation, target estimation and validation. Tracking is rst used to introduce high-level features, by extending a popular model based on low-level features[1]. Two automatic models of visual attention are further implemented. One based on winner take it all and inhibition of return as the mech- anisms of selection on a saliency model with high- and low-level features combined. Another which is based only on high-level object tracking results and statistic proper- ties from the collected eye-traces, with the possibility of activating inhibition of return as an additional mechanism. The parameters of the tracking framework thoroughly investigated and its success demonstrated. Eye-tracking experiments show that high- level features are much better at explaining the allocation of attention by the subjects in the study. Low-level features alone do correlate signi cantly with real allocation of attention. However, in fact it lowers the correlation score when combined with high-level features in comparison to using high-level features alone. Further, ndings in collected eye-traces are studied with qualitative method, mainly to discover direc- tions in future research in the area. Similarities and dissimilarities between automatic models of attention and collected eye-traces are discusse

    DISC: Deep Image Saliency Computing via Progressive Representation Learning

    Full text link
    Salient object detection increasingly receives attention as an important component or step in several pattern recognition and image processing tasks. Although a variety of powerful saliency models have been intensively proposed, they usually involve heavy feature (or model) engineering based on priors (or assumptions) about the properties of objects and backgrounds. Inspired by the effectiveness of recently developed feature learning, we provide a novel Deep Image Saliency Computing (DISC) framework for fine-grained image saliency computing. In particular, we model the image saliency from both the coarse- and fine-level observations, and utilize the deep convolutional neural network (CNN) to learn the saliency representation in a progressive manner. Specifically, our saliency model is built upon two stacked CNNs. The first CNN generates a coarse-level saliency map by taking the overall image as the input, roughly identifying saliency regions in the global context. Furthermore, we integrate superpixel-based local context information in the first CNN to refine the coarse-level saliency map. Guided by the coarse saliency map, the second CNN focuses on the local context to produce fine-grained and accurate saliency map while preserving object details. For a testing image, the two CNNs collaboratively conduct the saliency computing in one shot. Our DISC framework is capable of uniformly highlighting the objects-of-interest from complex background while preserving well object details. Extensive experiments on several standard benchmarks suggest that DISC outperforms other state-of-the-art methods and it also generalizes well across datasets without additional training. The executable version of DISC is available online: http://vision.sysu.edu.cn/projects/DISC.Comment: This manuscript is the accepted version for IEEE Transactions on Neural Networks and Learning Systems (T-NNLS), 201
    • …
    corecore