12,444 research outputs found

    Emerging technologies for the non-invasive characterization of physical-mechanical properties of tablets

    Get PDF
    The density, porosity, breaking force, viscoelastic properties, and the presence or absence of any structural defects or irregularities are important physical-mechanical quality attributes of popular solid dosage forms like tablets. The irregularities associated with these attributes may influence the drug product functionality. Thus, an accurate and efficient characterization of these properties is critical for successful development and manufacturing of a robust tablets. These properties are mainly analyzed and monitored with traditional pharmacopeial and non-pharmacopeial methods. Such methods are associated with several challenges such as lack of spatial resolution, efficiency, or sample-sparing attributes. Recent advances in technology, design, instrumentation, and software have led to the emergence of newer techniques for non-invasive characterization of physical-mechanical properties of tablets. These techniques include near infrared spectroscopy, Raman spectroscopy, X-ray microtomography, nuclear magnetic resonance (NMR) imaging, terahertz pulsed imaging, laser-induced breakdown spectroscopy, and various acoustic- and thermal-based techniques. Such state-of-the-art techniques are currently applied at various stages of development and manufacturing of tablets at industrial scale. Each technique has specific advantages or challenges with respect to operational efficiency and cost, compared to traditional analytical methods. Currently, most of these techniques are used as secondary analytical tools to support the traditional methods in characterizing or monitoring tablet quality attributes. Therefore, further development in the instrumentation and software, and studies on the applications are necessary for their adoption in routine analysis and monitoring of tablet physical-mechanical properties

    Detailed state of the art review for the different on-line/in-line oil analysis techniques in context of wind turbine gearboxes

    Get PDF
    The main driver behind developing advanced condition monitoring (CM) systems for the wind energy industry is the delivery of improved asset management regarding the operation and maintenance of the gearbox and other wind turbine components and systems. Current gearbox CM systems mainly detect faults by identifying ferrous materials, water, and air within oil by changes in certain properties such as electrical fields. In order to detect oil degradation and identify particles, more advanced devices are required to allow a better maintenance regime to be established. Current technologies available specifically for this purpose include Fourier transform infrared (FTIR) spectroscopy and ferrography. There are also several technologies that have not yet been or have been recently applied to CM problems. After reviewing the current state of the art, it is recommended that a combination of sensors would be used that analyze different characteristics of the oil. The information individually would not be highly accurate but combined it is fully expected that greater accuracy can be obtained. The technologies that are suitable in terms of cost, size, accuracy, and development are online ferrography, selective fluorescence spectroscopy, scattering measurements, FTIR, photoacoustic spectroscopy, and solid state viscometers

    Condition monitoring wind turbine gearboxes using on-line/in-line oil analysis techniques

    Get PDF
    Paper examining condition monitoring wind turbine gearboxes using on-line/in-line oil analysis techniques

    Analytical techniques: A compilation

    Get PDF
    A compilation, containing articles on a number of analytical techniques for quality control engineers and laboratory workers, is presented. Data cover techniques for testing electronic, mechanical, and optical systems, nondestructive testing techniques, and gas analysis techniques

    Monitoring early-age acoustic emission of cement paste and fly ash paste

    Get PDF
    In this study, a combined approach of several monitoring techniques was applied to allow correlations between the AE activity and related processes such as shrinkage and settlement evolution, capillary pressure and temperature development in fresh cementitious media. AE parameters related to frequency, energy, and cumulative activity which exhibit sensitivity to the particle size distribution of cement paste are compared with inert fly ash (FA) leading to isolation of the mechanical sources from the chemical ones. Characterization of the origin of different processes occurring in cement paste during hydration is complex. Although acoustic emission (AE) monitoring has been used before, a qualitative relation between the microstructural formation or other early-age processes and the number or parameters of AE signals has not been established. The high sensitivity of AE enables the recording of elastic waves within the cementitious material, allowing the detection of even low-intensity activities

    An acoustic black hole in a stationary hydrodynamic flow of microcavity polaritons

    Full text link
    We report an experimental study of superfluid hydrodynamic effects in a one-dimensional polariton fluid flowing along a laterally patterned semiconductor microcavity and hitting a micron-sized engineered defect. At high excitation power, superfluid propagation effects are observed in the polariton dynamics, in particular, a sharp acoustic horizon is formed at the defect position, separating regions of sub- and super-sonic flow. Our experimental findings are quantitatively reproduced by theoretical calculations based on a generalized Gross-Pitaevskii equation. Promising perspectives to observe Hawking radiation via photon correlation measurements are illustrated.Comment: 5 pages Main + 5 pages Supplementary, 8 figure

    Audible Acoustic Emissions for Monitoring High-Shear Granulation

    Get PDF
    High-shear wet granulation is a size enlargement process commonly used by the pharmaceutical industry to improve powder properties for downstream processes, such as tabletting. Granule growth however, is difficult to predict because the final product is sensitive to raw material properties and processing conditions. Development of process analytical technologies (PATs) is recommended by regulators to improve process understanding and monitor quality online. This work investigates the robustness of AAEs as PAT for high-shear granulation. Condenser microphones suspended in the air exhaust were used to collect AAEs from granulation. Applying power spectral density (PSD) analysis, trends related to wetting and end-point were identified between 20 and 250 Hz. A consistent decrease in PSD was observed with end-point, independent of formulation, material properties and process parameters. A design of experiment (DOE) showed the decrease results from increases in granule size and density, two critical quality attributes. Multivariate analysis confirmed AAEs could be used to monitor changes in size and density online. AAEs were also sensitive to changes in impeller speed, spray rate and total binder volume, suggesting these parameters could be used to adjust processes in real-time and achieve desired product attributes. The source of granulation AAEs was investigated by rotating spheres and wet granules of known size in stainless steel beakers. The results confirmed a relationship to particle size, and revealed AAEs are generated by particle-particle interactions. Overall, the research supports adoption of AAEs as a PAT for high-shear granulation to increase process knowledge and improve product quality
    • …
    corecore