275,701 research outputs found

    Exponentiated Subgradient Algorithm for Online Optimization under the Random Permutation Model

    Full text link
    Online optimization problems arise in many resource allocation tasks, where the future demands for each resource and the associated utility functions change over time and are not known apriori, yet resources need to be allocated at every point in time despite the future uncertainty. In this paper, we consider online optimization problems with general concave utilities. We modify and extend an online optimization algorithm proposed by Devanur et al. for linear programming to this general setting. The model we use for the arrival of the utilities and demands is known as the random permutation model, where a fixed collection of utilities and demands are presented to the algorithm in random order. We prove that under this model the algorithm achieves a competitive ratio of 1O(ϵ)1-O(\epsilon) under a near-optimal assumption that the bid to budget ratio is O(ϵ2log(m/ϵ))O (\frac{\epsilon^2}{\log({m}/{\epsilon})}), where mm is the number of resources, while enjoying a significantly lower computational cost than the optimal algorithm proposed by Kesselheim et al. We draw a connection between the proposed algorithm and subgradient methods used in convex optimization. In addition, we present numerical experiments that demonstrate the performance and speed of this algorithm in comparison to existing algorithms

    Improved Online Algorithms for Knapsack and GAP in the Random Order Model

    Get PDF
    The knapsack problem is one of the classical problems in combinatorial optimization: Given a set of items, each specified by its size and profit, the goal is to find a maximum profit packing into a knapsack of bounded capacity. In the online setting, items are revealed one by one and the decision, if the current item is packed or discarded forever, must be done immediately and irrevocably upon arrival. We study the online variant in the random order model where the input sequence is a uniform random permutation of the item set. We develop a randomized (1/6.65)-competitive algorithm for this problem, outperforming the current best algorithm of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]. Our algorithm is based on two new insights: We introduce a novel algorithmic approach that employs two given algorithms, optimized for restricted item classes, sequentially on the input sequence. In addition, we study and exploit the relationship of the knapsack problem to the 2-secretary problem. The generalized assignment problem (GAP) includes, besides the knapsack problem, several important problems related to scheduling and matching. We show that in the same online setting, applying the proposed sequential approach yields a (1/6.99)-competitive randomized algorithm for GAP. Again, our proposed algorithm outperforms the current best result of competitive ratio 1/8.06 [Kesselheim et al. SIAM J. Comp. 47(5)]

    Social welfare and profit maximization from revealed preferences

    Full text link
    Consider the seller's problem of finding optimal prices for her nn (divisible) goods when faced with a set of mm consumers, given that she can only observe their purchased bundles at posted prices, i.e., revealed preferences. We study both social welfare and profit maximization with revealed preferences. Although social welfare maximization is a seemingly non-convex optimization problem in prices, we show that (i) it can be reduced to a dual convex optimization problem in prices, and (ii) the revealed preferences can be interpreted as supergradients of the concave conjugate of valuation, with which subgradients of the dual function can be computed. We thereby obtain a simple subgradient-based algorithm for strongly concave valuations and convex cost, with query complexity O(m2/ϵ2)O(m^2/\epsilon^2), where ϵ\epsilon is the additive difference between the social welfare induced by our algorithm and the optimum social welfare. We also study social welfare maximization under the online setting, specifically the random permutation model, where consumers arrive one-by-one in a random order. For the case where consumer valuations can be arbitrary continuous functions, we propose a price posting mechanism that achieves an expected social welfare up to an additive factor of O(mn)O(\sqrt{mn}) from the maximum social welfare. Finally, for profit maximization (which may be non-convex in simple cases), we give nearly matching upper and lower bounds on the query complexity for separable valuations and cost (i.e., each good can be treated independently)

    Improved Online Algorithm for Fractional Knapsack in the Random Order Model

    Get PDF
    The fractional knapsack problem is one of the classical problems in combinatorial optimization, which is well understood in the offline setting. However, the corresponding online setting has been handled only briefly in the theoretical computer science literature so far, although it appears in several applications. Even the previously best known guarantee for the competitive ratio was worse than the best known for the integral problem in the popular random order model. We show that there is an algorithm for the online fractional knapsack problem that admits a competitive ratio of 4.39. Our result significantly improves over the previously best known competitive ratio of 9.37 and surpasses the current best 6.65-competitive algorithm for the integral case. Moreover, our algorithm is deterministic in contrast to the randomized algorithms achieving the results mentioned above

    Robust Algorithms Under Adversarial Injections

    Get PDF
    In this paper, we study streaming and online algorithms in the context of randomness in the input. For several problems, a random order of the input sequence - as opposed to the worst-case order - appears to be a necessary evil in order to prove satisfying guarantees. However, algorithmic techniques that work under this assumption tend to be vulnerable to even small changes in the distribution. For this reason, we propose a new adversarial injections model, in which the input is ordered randomly, but an adversary may inject misleading elements at arbitrary positions. We believe that studying algorithms under this much weaker assumption can lead to new insights and, in particular, more robust algorithms. We investigate two classical combinatorial-optimization problems in this model: Maximum matching and cardinality constrained monotone submodular function maximization. Our main technical contribution is a novel streaming algorithm for the latter that computes a 0.55-approximation. While the algorithm itself is clean and simple, an involved analysis shows that it emulates a subdivision of the input stream which can be used to greatly limit the power of the adversary
    corecore