918 research outputs found

    Radial basis function neural network control for parallel spatial robot

    Get PDF
    The derivation of motion equations of constrained spatial multibody system is an important problem of dynamics and control of parallel robots. The paper firstly presents an overview of the calculating the torque of the driving stages of the parallel robots using Kronecker product. The main content of this paper is to derive the inverse dynamics controllers based on the radial basis function (RBF) neural network control law for parallel robot manipulators. Finally,  numerical simulation of the inverse dynamics controller for a 3-RRR delta robot manipulator is presented as an illustrative example

    A brief review of neural networks based learning and control and their applications for robots

    Get PDF
    As an imitation of the biological nervous systems, neural networks (NN), which are characterized with powerful learning ability, have been employed in a wide range of applications, such as control of complex nonlinear systems, optimization, system identification and patterns recognition etc. This article aims to bring a brief review of the state-of-art NN for the complex nonlinear systems. Recent progresses of NNs in both theoretical developments and practical applications are investigated and surveyed. Specifically, NN based robot learning and control applications were further reviewed, including NN based robot manipulator control, NN based human robot interaction and NN based behavior recognition and generation

    Neural Adaptive Backstepping Control of a Robotic Manipulator With Prescribed Performance Constraint

    Full text link
    IEEE This paper presents an adaptive neural network (NN) control of a two-degree-of-freedom manipulator driven by an electrohydraulic actuator. To restrict the system output in a prescribed performance constraint, a weighted performance function is designed to guarantee the dynamic and steady tracking errors of joint angle in a required accuracy. Then, a radial-basis-function NN is constructed to train the unknown model dynamics of a manipulator by traditional backstepping control (TBC) and obtain the preliminary estimated model, which can replace the preknown dynamics in the backstepping iteration. Furthermore, an adaptive estimation law is adopted to self-tune every trained-node weight, and the estimated model is online optimized to enhance the robustness of the NN controller. The effectiveness of the proposed control is verified by comparative simulation and experimental results with Proportional-integral-derivative and TBC methods

    Self-learning PID Control for X-Y NC Position Table with Uncertainty Base on Neural Network

    Get PDF
    An adaptive radical basis function (RBF) neural network PID control scheme for X-Y position table is proposed by the paper. Firstly, X-Y position table model is established, controller based on neutral network is used to learn adaptive and compensate uncertainty model of X-Y position table, neutral network is used to study model. PID neural network controller base on augmented variable method is designed. PID controller is used as assistant direction error controller, neural network parameters base on stochastic gradient algorithm can be adjust adaptive on line. The simulation results show that the presented controller has important engineering value

    Adaptive Control Based On Neural Network

    Get PDF
    • …
    corecore