83,641 research outputs found

    Online Deep Learning from Doubly-Streaming Data

    Get PDF
    This paper investigates a new online learning problem with doubly-streaming data, where the data streams are described by feature spaces that constantly evolve, with new features emerging and old features fading away. A plausible idea to deal with such data streams is to establish a relationship between the old and new feature spaces, so that an online learner can leverage the knowledge learned from the old features to better the learning performance on the new features. Unfortunately, this idea does not scale up to high-dimensional multimedia data with complex feature interplay, which suffers a tradeoff between onlineness, which biases shallow learners, and expressiveness, which requires deep models. Motivated by this, we propose a novel OLD3S paradigm, where a shared latent subspace is discovered to summarize information from the old and new feature spaces, building an intermediate feature mapping relationship. A key trait of OLD3S is to treat the model capacity as a learnable semantics, aiming to yield optimal model depth and parameters jointly in accordance with the complexity and non-linearity of the input data streams in an online fashion. Both theoretical analysis and empirical studies substantiate the viability and effectiveness of our proposed approach. The code is available online at https://github.com/X1aoLian/OLD3S

    Towards mining trapezoidal data streams

    Full text link
    © 2015 IEEE. We study a new problem of learning from doubly-streaming data where both data volume and feature space increase over time. We refer to the problem as mining trapezoidal data streams. The problem is challenging because both data volume and feature space are increasing, to which existing online learning, online feature selection and streaming feature selection algorithms are inapplicable. We propose a new Sparse Trapezoidal Streaming Data mining algorithm (STSD) and its two variants which combine online learning and online feature selection to enable learning trapezoidal data streams with infinite training instances and features. Specifically, when new training instances carrying new features arrive, the classifier updates the existing features by following the passive-aggressive update rule used in online learning and updates the new features with the structural risk minimization principle. Feature sparsity is also introduced using the projected truncation techniques. Extensive experiments on the demonstrated UCI data sets show the performance of the proposed algorithms

    Detecting Irregular Patterns in IoT Streaming Data for Fall Detection

    Full text link
    Detecting patterns in real time streaming data has been an interesting and challenging data analytics problem. With the proliferation of a variety of sensor devices, real-time analytics of data from the Internet of Things (IoT) to learn regular and irregular patterns has become an important machine learning problem to enable predictive analytics for automated notification and decision support. In this work, we address the problem of learning an irregular human activity pattern, fall, from streaming IoT data from wearable sensors. We present a deep neural network model for detecting fall based on accelerometer data giving 98.75 percent accuracy using an online physical activity monitoring dataset called "MobiAct", which was published by Vavoulas et al. The initial model was developed using IBM Watson studio and then later transferred and deployed on IBM Cloud with the streaming analytics service supported by IBM Streams for monitoring real-time IoT data. We also present the systems architecture of the real-time fall detection framework that we intend to use with mbientlabs wearable health monitoring sensors for real time patient monitoring at retirement homes or rehabilitation clinics.Comment: 7 page

    Harvesting Data from Advanced Technologies

    Get PDF
    Data streams are emerging everywhere such as Web logs, Web page click streams, sensor data streams, and credit card transaction flows. Different from traditional data sets, data streams are sequentially generated and arrive one by one rather than being available for random access before learning begins, and they are potentially huge or even infinite that it is impractical to store the whole data. To study learning from data streams, we target online learning, which generates a best–so far model on the fly by sequentially feeding in the newly arrived data, updates the model as needed, and then applies the learned model for accurate real-time prediction or classification in real-world applications. Several challenges arise from this scenario: first, data is not available for random access or even multiple access; second, data imbalance is a common situation; third, the performance of the model should be reasonable even when the amount of data is limited; fourth, the model should be updated easily but not frequently; and finally, the model should always be ready for prediction and classification. To meet these challenges, we investigate streaming feature selection by taking advantage of mutual information and group structures among candidate features. Streaming feature selection reduces the number of features by removing noisy, irrelevant, or redundant features and selecting relevant features on the fly, and brings about palpable effects for applications: speeding up the learning process, improving learning accuracy, enhancing generalization capability, and improving model interpretation. Compared with traditional feature selection, which can only handle pre-given data sets without considering the potential group structures among candidate features, streaming feature selection is able to handle streaming data and select meaningful and valuable feature sets with or without group structures on the fly. In this research, we propose 1) a novel streaming feature selection algorithm (GFSSF, Group Feature Selection with Streaming Features) by exploring mutual information and group structures among candidate features for both group and individual levels of feature selection from streaming data, 2) a lazy online prediction model with data fusion, feature selection and weighting technologies for real-time traffic prediction from heterogeneous sensor data streams, 3) a lazy online learning model (LB, Live Bayes) with dynamic resampling technology to learn from imbalanced embedded mobile sensor data streams for real-time activity recognition and user recognition, and 4) a lazy update online learning model (CMLR, Cost-sensitive Multinomial Logistic Regression) with streaming feature selection for accurate real-time classification from imbalanced and small sensor data streams. Finally, by integrating traffic flow theory, advanced sensors, data gathering, data fusion, feature selection and weighting, online learning and visualization technologies to estimate and visualize the current and future traffic, a real-time transportation prediction system named VTraffic is built for the Vermont Agency of Transportation

    MIHash: Online Hashing with Mutual Information

    Full text link
    Learning-based hashing methods are widely used for nearest neighbor retrieval, and recently, online hashing methods have demonstrated good performance-complexity trade-offs by learning hash functions from streaming data. In this paper, we first address a key challenge for online hashing: the binary codes for indexed data must be recomputed to keep pace with updates to the hash functions. We propose an efficient quality measure for hash functions, based on an information-theoretic quantity, mutual information, and use it successfully as a criterion to eliminate unnecessary hash table updates. Next, we also show how to optimize the mutual information objective using stochastic gradient descent. We thus develop a novel hashing method, MIHash, that can be used in both online and batch settings. Experiments on image retrieval benchmarks (including a 2.5M image dataset) confirm the effectiveness of our formulation, both in reducing hash table recomputations and in learning high-quality hash functions.Comment: International Conference on Computer Vision (ICCV), 201

    Online Real-time Learning of Dynamical Systems from Noisy Streaming Data

    Full text link
    Recent advancements in sensing and communication facilitate obtaining high-frequency real-time data from various physical systems like power networks, climate systems, biological networks, etc. However, since the data are recorded by physical sensors, it is natural that the obtained data is corrupted by measurement noise. In this paper, we present a novel algorithm for online real-time learning of dynamical systems from noisy time-series data, which employs the Robust Koopman operator framework to mitigate the effect of measurement noise. The proposed algorithm has three main advantages: a) it allows for online real-time monitoring of a dynamical system; b) it obtains a linear representation of the underlying dynamical system, thus enabling the user to use linear systems theory for analysis and control of the system; c) it is computationally fast and less intensive than the popular Extended Dynamic Mode Decomposition (EDMD) algorithm. We illustrate the efficiency of the proposed algorithm by applying it to identify the Van der Pol oscillator, the IEEE 68 bus system, and a ring network of Van der Pol oscillators
    • …
    corecore