32,994 research outputs found

    Online learning and detection of faces with low human supervision

    Get PDF
    The final publication is available at link.springer.comWe present an efficient,online,and interactive approach for computing a classifier, called Wild Lady Ferns (WiLFs), for face learning and detection using small human supervision. More precisely, on the one hand, WiLFs combine online boosting and extremely randomized trees (Random Ferns) to compute progressively an efficient and discriminative classifier. On the other hand, WiLFs use an interactive human-machine approach that combines two complementary learning strategies to reduce considerably the degree of human supervision during learning. While the first strategy corresponds to query-by-boosting active learning, that requests human assistance over difficult samples in function of the classifier confidence, the second strategy refers to a memory-based learning which uses Âż Exemplar-based Nearest Neighbors (ÂżENN) to assist automatically the classifier. A pre-trained Convolutional Neural Network (CNN) is used to perform ÂżENN with high-level feature descriptors. The proposed approach is therefore fast (WilFs run in 1 FPS using a code not fully optimized), accurate (we obtain detection rates over 82% in complex datasets), and labor-saving (human assistance percentages of less than 20%). As a byproduct, we demonstrate that WiLFs also perform semi-automatic annotation during learning, as while the classifier is being computed, WiLFs are discovering faces instances in input images which are used subsequently for training online the classifier. The advantages of our approach are demonstrated in synthetic and publicly available databases, showing comparable detection rates as offline approaches that require larger amounts of handmade training data.Peer ReviewedPostprint (author's final draft

    Interactive multiple object learning with scanty human supervision

    Get PDF
    © 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/We present a fast and online human-robot interaction approach that progressively learns multiple object classifiers using scanty human supervision. Given an input video stream recorded during the human robot interaction, the user just needs to annotate a small fraction of frames to compute object specific classifiers based on random ferns which share the same features. The resulting methodology is fast (in a few seconds, complex object appearances can be learned), versatile (it can be applied to unconstrained scenarios), scalable (real experiments show we can model up to 30 different object classes), and minimizes the amount of human intervention by leveraging the uncertainty measures associated to each classifier.; We thoroughly validate the approach on synthetic data and on real sequences acquired with a mobile platform in indoor and outdoor scenarios containing a multitude of different objects. We show that with little human assistance, we are able to build object classifiers robust to viewpoint changes, partial occlusions, varying lighting and cluttered backgrounds. (C) 2016 Elsevier Inc. All rights reserved.Peer ReviewedPostprint (author's final draft

    "'Who are you?' - Learning person specific classifiers from video"

    Get PDF
    We investigate the problem of automatically labelling faces of characters in TV or movie material with their names, using only weak supervision from automaticallyaligned subtitle and script text. Our previous work (Everingham et al. [8]) demonstrated promising results on the task, but the coverage of the method (proportion of video labelled) and generalization was limited by a restriction to frontal faces and nearest neighbour classification. In this paper we build on that method, extending the coverage greatly by the detection and recognition of characters in profile views. In addition, we make the following contributions: (i) seamless tracking, integration and recognition of profile and frontal detections, and (ii) a character specific multiple kernel classifier which is able to learn the features best able to discriminate between the characters. We report results on seven episodes of the TV series “Buffy the Vampire Slayer”, demonstrating significantly increased coverage and performance with respect to previous methods on this material

    Self-supervised learning of a facial attribute embedding from video

    Full text link
    We propose a self-supervised framework for learning facial attributes by simply watching videos of a human face speaking, laughing, and moving over time. To perform this task, we introduce a network, Facial Attributes-Net (FAb-Net), that is trained to embed multiple frames from the same video face-track into a common low-dimensional space. With this approach, we make three contributions: first, we show that the network can leverage information from multiple source frames by predicting confidence/attention masks for each frame; second, we demonstrate that using a curriculum learning regime improves the learned embedding; finally, we demonstrate that the network learns a meaningful face embedding that encodes information about head pose, facial landmarks and facial expression, i.e. facial attributes, without having been supervised with any labelled data. We are comparable or superior to state-of-the-art self-supervised methods on these tasks and approach the performance of supervised methods.Comment: To appear in BMVC 2018. Supplementary material can be found at http://www.robots.ox.ac.uk/~vgg/research/unsup_learn_watch_faces/fabnet.htm

    Self-supervised Multi-level Face Model Learning for Monocular Reconstruction at over 250 Hz

    Full text link
    The reconstruction of dense 3D models of face geometry and appearance from a single image is highly challenging and ill-posed. To constrain the problem, many approaches rely on strong priors, such as parametric face models learned from limited 3D scan data. However, prior models restrict generalization of the true diversity in facial geometry, skin reflectance and illumination. To alleviate this problem, we present the first approach that jointly learns 1) a regressor for face shape, expression, reflectance and illumination on the basis of 2) a concurrently learned parametric face model. Our multi-level face model combines the advantage of 3D Morphable Models for regularization with the out-of-space generalization of a learned corrective space. We train end-to-end on in-the-wild images without dense annotations by fusing a convolutional encoder with a differentiable expert-designed renderer and a self-supervised training loss, both defined at multiple detail levels. Our approach compares favorably to the state-of-the-art in terms of reconstruction quality, better generalizes to real world faces, and runs at over 250 Hz.Comment: CVPR 2018 (Oral). Project webpage: https://gvv.mpi-inf.mpg.de/projects/FML

    Learnable PINs: Cross-Modal Embeddings for Person Identity

    Full text link
    We propose and investigate an identity sensitive joint embedding of face and voice. Such an embedding enables cross-modal retrieval from voice to face and from face to voice. We make the following four contributions: first, we show that the embedding can be learnt from videos of talking faces, without requiring any identity labels, using a form of cross-modal self-supervision; second, we develop a curriculum learning schedule for hard negative mining targeted to this task, that is essential for learning to proceed successfully; third, we demonstrate and evaluate cross-modal retrieval for identities unseen and unheard during training over a number of scenarios and establish a benchmark for this novel task; finally, we show an application of using the joint embedding for automatically retrieving and labelling characters in TV dramas.Comment: To appear in ECCV 201

    Memory Based Online Learning of Deep Representations from Video Streams

    Full text link
    We present a novel online unsupervised method for face identity learning from video streams. The method exploits deep face descriptors together with a memory based learning mechanism that takes advantage of the temporal coherence of visual data. Specifically, we introduce a discriminative feature matching solution based on Reverse Nearest Neighbour and a feature forgetting strategy that detect redundant features and discard them appropriately while time progresses. It is shown that the proposed learning procedure is asymptotically stable and can be effectively used in relevant applications like multiple face identification and tracking from unconstrained video streams. Experimental results show that the proposed method achieves comparable results in the task of multiple face tracking and better performance in face identification with offline approaches exploiting future information. Code will be publicly available.Comment: arXiv admin note: text overlap with arXiv:1708.0361
    • …
    corecore