4,144 research outputs found

    Online indexing and clustering of social media data for emergency management

    Get PDF
    Social media becomes a vital part in our daily communication practice, creating a huge amount of data and covering different real-world situations. Currently, there is a tendency in making use of social media during emergency management and response. Most of this effort is performed by a huge number of volunteers browsing through social media data and preparing maps that can be used by professional first responders. Automatic analysis approaches are needed to directly support the response teams in monitoring and also understanding the evolution of facts in social media during an emergency situation. In this paper, we investigate the problem of real-time sub-events identification in social media data (i.e., Twitter, Flickr and YouTube) during emergencies. A processing framework is presented serving to generate situational reports/summaries from social media data. This framework relies in particular on online indexing and online clustering of media data streams. Online indexing aims at tracking the relevant vocabulary to capture the evolution of sub-events over time. Online clustering, on the other hand, is used to detect and update the set of sub-events using the indices built during online indexing. To evaluate the framework, social media data related to Hurricane Sandy 2012 was collected and used in a series of experiments. In particular some online indexing methods have been tested against a proposed method to show their suitability. Moreover, the quality of online clustering has been studied using standard clustering indices. Overall the framework provides a great opportunity for supporting emergency responders as demonstrated in real-world emergency exercises

    Scalable distributed event detection for Twitter

    Get PDF
    Social media streams, such as Twitter, have shown themselves to be useful sources of real-time information about what is happening in the world. Automatic detection and tracking of events identified in these streams have a variety of real-world applications, e.g. identifying and automatically reporting road accidents for emergency services. However, to be useful, events need to be identified within the stream with a very low latency. This is challenging due to the high volume of posts within these social streams. In this paper, we propose a novel event detection approach that can both effectively detect events within social streams like Twitter and can scale to thousands of posts every second. Through experimentation on a large Twitter dataset, we show that our approach can process the equivalent to the full Twitter Firehose stream, while maintaining event detection accuracy and outperforming an alternative distributed event detection system

    Potential Indirect Relationships in Productive Networks

    Get PDF
    Productive Networks, such as Social Networks Services, organize evidence about human behavior. This evidence is independent of the network content type, and may support the discovery of new relationships between users and content, or with other users. These indirect relationships are important for recommendation systems, and systems where potential relationships between users and content (e.g., locations) is relevant, such as with the emergency management domain, where the discovery of relationships between users and locations on productive networks may enable the identification of population density variations, increasing the accuracy of emergency alerts. This thesis presents a Productive Networks model, which enables the development of a methodology for indirect relationships discovery, using the metadata on the network, and avoiding the computational cost of content analysis. We designed and conducted a set of experiments to evaluate our proposals. Our results are twofold: firstly, the productive network model is sufficiently robust to represent a wide range of networks; secondly, the indirect relationship discovery methodology successfully identifies relevant relationships between users and content. We also present applications of the model and methodology in several contexts

    Social media for crisis management: clustering approaches for sub-event detection

    Get PDF
    Social media is getting increasingly important for crisis management, as it enables the public to provide information in different forms: text, image and video which can be valuable for crisis management. Such information is usually spatial and time-oriented, useful for understanding the emergency needs, performing decision making and supporting learning/training after the emergency. Due to the huge amount of data gathered during a crisis, automatic processing of the data is needed to support crisis management. One way of automating the process is to uncover sub-events (i.e., special hotspots) in the data collected from social media to enable better understanding of the crisis. We propose in the present paper clustering approaches for sub-event detection that operate on Flickr and YouTube data since multimedia data is of particular importance to understand the situation. Different clustering algorithms are assessed using the textual annotations (i.e., title, tags and description) and additional metadata information, like time and location. The empirical study shows in particular that social multimedia combined with clustering in the context of crisis management is worth using for detecting sub-events. It serves to integrate social media into crisis management without cumbersome manual monitoring

    Indexing of fictional video content for event detection and summarisation

    Get PDF
    This paper presents an approach to movie video indexing that utilises audiovisual analysis to detect important and meaningful temporal video segments, that we term events. We consider three event classes, corresponding to dialogues, action sequences, and montages, where the latter also includes musical sequences. These three event classes are intuitive for a viewer to understand and recognise whilst accounting for over 90% of the content of most movies. To detect events we leverage traditional filmmaking principles and map these to a set of computable low-level audiovisual features. Finite state machines (FSMs) are used to detect when temporal sequences of specific features occur. A set of heuristics, again inspired by filmmaking conventions, are then applied to the output of multiple FSMs to detect the required events. A movie search system, named MovieBrowser, built upon this approach is also described. The overall approach is evaluated against a ground truth of over twenty-three hours of movie content drawn from various genres and consistently obtains high precision and recall for all event classes. A user experiment designed to evaluate the usefulness of an event-based structure for both searching and browsing movie archives is also described and the results indicate the usefulness of the proposed approach
    corecore