2,342 research outputs found

    Vertical wind profile characterization and identification of patterns based on a shape clustering algorithm

    Get PDF
    Wind power plants are becoming a generally accepted resource in the generation mix of many utilities. At the same time, the size and the power rating of individual wind turbines have increased considerably. Under these circumstances, the sector is increasingly demanding an accurate characterization of vertical wind speed profiles to estimate properly the incoming wind speed at the rotor swept area and, consequently, assess the potential for a wind power plant site. The present paper describes a shape-based clustering characterization and visualization of real vertical wind speed data. The proposed solution allows us to identify the most likely vertical wind speed patterns for a specific location based on real wind speed measurements. Moreover, this clustering approach also provides characterization and classification of such vertical wind profiles. This solution is highly suitable for a large amount of data collected by remote sensing equipment, where wind speed values at different heights within the rotor swept area are available for subsequent analysis. The methodology is based on z-normalization, shape-based distance metric solution and the Ward-hierarchical clustering method. Real vertical wind speed profile data corresponding to a Spanish wind power plant and collected by using a commercialWindcube equipment during several months are used to assess the proposed characterization and clustering process, involving more than 100000 wind speed data values. All analyses have been implemented using open-source R-software. From the results, at least four different vertical wind speed patterns are identified to characterize properly over 90% of the collected wind speed data along the day. Therefore, alternative analytical function criteria should be subsequently proposed for vertical wind speed characterization purposes.The authors are grateful for the financial support from the Spanish Ministry of the Economy and Competitiveness and the European Union —ENE2016-78214-C2-2-R—and the Spanish Education, Culture and Sport Ministry —FPU16/042

    PAC: A Novel Self-Adaptive Neuro-Fuzzy Controller for Micro Aerial Vehicles

    Full text link
    There exists an increasing demand for a flexible and computationally efficient controller for micro aerial vehicles (MAVs) due to a high degree of environmental perturbations. In this work, an evolving neuro-fuzzy controller, namely Parsimonious Controller (PAC) is proposed. It features fewer network parameters than conventional approaches due to the absence of rule premise parameters. PAC is built upon a recently developed evolving neuro-fuzzy system known as parsimonious learning machine (PALM) and adopts new rule growing and pruning modules derived from the approximation of bias and variance. These rule adaptation methods have no reliance on user-defined thresholds, thereby increasing the PAC's autonomy for real-time deployment. PAC adapts the consequent parameters with the sliding mode control (SMC) theory in the single-pass fashion. The boundedness and convergence of the closed-loop control system's tracking error and the controller's consequent parameters are confirmed by utilizing the LaSalle-Yoshizawa theorem. Lastly, the controller's efficacy is evaluated by observing various trajectory tracking performance from a bio-inspired flapping-wing micro aerial vehicle (BI-FWMAV) and a rotary wing micro aerial vehicle called hexacopter. Furthermore, it is compared to three distinctive controllers. Our PAC outperforms the linear PID controller and feed-forward neural network (FFNN) based nonlinear adaptive controller. Compared to its predecessor, G-controller, the tracking accuracy is comparable, but the PAC incurs significantly fewer parameters to attain similar or better performance than the G-controller.Comment: This paper has been accepted for publication in Information Science Journal 201

    From monitoring data to remaining useful life : an evolving approach including uncertainty.

    No full text
    International audienceAlthough prognostic activity is nowadays recognized as a key feature in maintenance strategies, real prognostic systems are scarce in industry. That can be explained from different aspects, one of them being the lack of knowledge on the monitored system that impedes the development of classical dependability analysis (based on statistical data for example). Within this frame, the general purpose of the work is to propose a prognostic system that starts from monitoring data and goes through provisional reliability and remaining useful life by characterizing the uncertainty following from the degradation process. More precisely, the paper emphasizes on the development of an evolving neuro-fuzzy predictor that, not only "gives" an approximation of the degradation of an equipment but also associates to it a confidence measure

    A New Approach to Adaptive Neuro-fuzzy Modeling using Kernel based Clustering

    Get PDF
    Data clustering is a well known technique for fuzzy model identification or fuzzy modelling for apprehending the system behavior in the form of fuzzy if-then rules based on experimental data Fuzzy c- Means FCM clustering and subtractive clustering SC are efficient techniques for fuzzy rule extraction in fuzzy modeling of Adaptive Neuro-fuzzy Inference System ANFIS In this paper we have employed a novel technique to build the rule base of ANFIS based on the kernel based variants of these two clustering techniques which have shown better clustering accuracy In kernel based clustering approach the kernel functions are used to calculate the distance measure between the data points during clustering which enables to map the data to a higher dimensional space This generalization makes data set more distinctly separable which results in more accurate cluster centers and therefore a more precise rule base for the ANFIS can be constructed which increases the prediction performance of the system The performance analysis of ANFIS models built using kernel based FCM and kernel based SC has been done on three business prediction problems viz sales forecasting stock price prediction and qualitative bankruptcy prediction A performance comparison with the ANFIS models based on conventional SC and FCM clustering for each of these forecasting problems has been provided and discusse

    Tool wear monitoring using neuro-fuzzy techniques: a comparative study in a turning process

    Get PDF
    Tool wear detection is a key issue for tool condition monitoring. The maximization of useful tool life is frequently related with the optimization of machining processes. This paper presents two model-based approaches for tool wear monitoring on the basis of neuro-fuzzy techniques. The use of a neuro-fuzzy hybridization to design a tool wear monitoring system is aiming at exploiting the synergy of neural networks and fuzzy logic, by combining human reasoning with learning and connectionist structure. The turning process that is a well-known machining process is selected for this case study. A four-input (i.e., time, cutting forces, vibrations and acoustic emissions signals) single-output (tool wear rate) model is designed and implemented on the basis of three neuro-fuzzy approaches (inductive, transductive and evolving neuro-fuzzy systems). The tool wear model is then used for monitoring the turning process. The comparative study demonstrates that the transductive neuro-fuzzy model provides better error-based performance indices for detecting tool wear than the inductive neuro-fuzzy model and than the evolving neuro-fuzzy model

    Real-Time Machine Learning Based Open Switch Fault Detection and Isolation for Multilevel Multiphase Drives

    Get PDF
    Due to the rapid proliferation interest of the multiphase machines and their combination with multilevel inverters technology, the demand for high reliability and resilient in the multiphase multilevel drives is increased. High reliability can be achieved by deploying systematic preventive real-time monitoring, robust control, and efficient fault diagnosis strategies. Fault diagnosis, as an indispensable methodology to preserve the seamless post-fault operation, is carried out in consecutive steps; monitoring the observable signals to generate the residuals, evaluating the observations to make a binary decision if any abnormality has occurred, and identifying the characteristics of the abnormalities to locate and isolate the failed components. It is followed by applying an appropriate reconfiguration strategy to ensure that the system can tolerate the failure. The primary focus of presented dissertation was to address employing computational and machine learning techniques to construct a proficient fault diagnosis scheme in multilevel multiphase drives. First, the data-driven nonlinear model identification/prediction methods are used to form a hybrid fault detection framework, which combines module-level and system-level methods in power converters, to enhance the performance and obtain a rapid real-time detection. Applying suggested nonlinear model predictors along with different systems (conventional two-level inverter and three-level neutral point clamped inverter) result in reducing the detection time to 1% of stator current fundamental period without deploying component-level monitoring equipment. Further, two methods using semi-supervised learning and analytical data mining concepts are presented to isolate the failed component. The semi-supervised fuzzy algorithm is engaged in building the clustering model because the deficient labeled datasets (prior knowledge of the system) leads to degraded performance in supervised clustering. Also, an analytical data mining procedure is presented based on data interpretability that yields two criteria to isolate the failure. A key part of this work also dealt with the discrimination between the post-fault characteristics, which are supposed to carry the data reflecting the fault influence, and the output responses, which are compensated by controllers under closed-loop control strategy. The performance of all designed schemes is evaluated through experiments

    An exTS based Neuro-Fuzzy algorithm for prognostics and tool condition monitoring.

    No full text
    International audienceThe growing interest in predictive maintenance makes industrials and researchers turning themselves to artificial intelligence methods for fulfilling the tasks of condition monitoring and prognostics. Within this frame, the general purpose of this paper is to investigate the capabilities of an Evolving eXtended Takagi Sugeno (exTS) based neuro-fuzzy algorithm to predict the tool condition in high-speed machining conditions. The performance of evolving Neuro-Fuzzy model is compared with an Adaptive Neuro-Fuzzy Inference System (ANFIS) and a Multiple Regression Model (MRM) in term of accuracy and reliability through a case study of tool condition monitoring. The reliability of exTS also investigated

    Error estimation of a neuro-fuzzy predictor for prognostic purpose.

    No full text
    International audiencePrognostic is recognized as a key feature as the estimation of the remaining useful life of an equipment allows avoiding inopportune maintenance spending. However, it can be difficult to implement an efficient prognostic tool since the lack of knowledge on the behavior of an equipment can impede the development of classical dependability analysis. In this context, the general purpose of the work is to define a prognostic system for which any assumption on its structure is necessary: it starts from monitoring data and goes through provisional reliability and remaining useful life by characterizing the uncertainty following from the degradation process. Developments are founded on the use of the evolving eXtended Tagaki-Sugeno system as a neurofuzzy predictor. A method to estimate the probability distribution function of the predicted degradation signal is proposed. It enables to perform a priori reliability analysis. The approach is based on a recursive calculation procedure and is thereby well adapted to online applications
    corecore