2,553 research outputs found

    Precision-Energy-Throughput Scaling Of Generic Matrix Multiplication and Convolution Kernels Via Linear Projections

    Get PDF
    Generic matrix multiplication (GEMM) and one-dimensional convolution/cross-correlation (CONV) kernels often constitute the bulk of the compute- and memory-intensive processing within image/audio recognition and matching systems. We propose a novel method to scale the energy and processing throughput of GEMM and CONV kernels for such error-tolerant multimedia applications by adjusting the precision of computation. Our technique employs linear projections to the input matrix or signal data during the top-level GEMM and CONV blocking and reordering. The GEMM and CONV kernel processing then uses the projected inputs and the results are accumulated to form the final outputs. Throughput and energy scaling takes place by changing the number of projections computed by each kernel, which in turn produces approximate results, i.e. changes the precision of the performed computation. Results derived from a voltage- and frequency-scaled ARM Cortex A15 processor running face recognition and music matching algorithms demonstrate that the proposed approach allows for 280%~440% increase of processing throughput and 75%~80% decrease of energy consumption against optimized GEMM and CONV kernels without any impact in the obtained recognition or matching accuracy. Even higher gains can be obtained if one is willing to tolerate some reduction in the accuracy of the recognition and matching applications

    Two-phase incremental kernel PCA for learning massive or online datasets

    Get PDF
    As a powerful nonlinear feature extractor, kernel principal component analysis (KPCA) has been widely adopted in many machine learning applications. However, KPCA is usually performed in a batch mode, leading to some potential problems when handling massive or online datasets. To overcome this drawback of KPCA, in this paper, we propose a two-phase incremental KPCA (TP-IKPCA) algorithm which can incorporate data into KPCA in an incremental fashion. In the first phase, an incremental algorithm is developed to explicitly express the data in the kernel space. In the second phase, we extend an incremental principal component analysis (IPCA) to estimate the kernel principal components. Extensive experimental results on both synthesized and real datasets showed that the proposed TP-IKPCA produces similar principal components as conventional batch-based KPCA but is computationally faster than KPCA and its several incremental variants. Therefore, our algorithm can be applied to massive or online datasets where the batch method is not available

    Two-phase incremental kernel PCA for learning massive or online datasets

    Get PDF
    As a powerful nonlinear feature extractor, kernel principal component analysis (KPCA) has been widely adopted in many machine learning applications. However, KPCA is usually performed in a batch mode, leading to some potential problems when handling massive or online datasets. To overcome this drawback of KPCA, in this paper, we propose a two-phase incremental KPCA (TP-IKPCA) algorithm which can incorporate data into KPCA in an incremental fashion. In the first phase, an incremental algorithm is developed to explicitly express the data in the kernel space. In the second phase, we extend an incremental principal component analysis (IPCA) to estimate the kernel principal components. Extensive experimental results on both synthesized and real datasets showed that the proposed TP-IKPCA produces similar principal components as conventional batch-based KPCA but is computationally faster than KPCA and its several incremental variants. Therefore, our algorithm can be applied to massive or online datasets where the batch method is not available

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues
    • …
    corecore