61,820 research outputs found

    Stochastic model predictive control for constrained networked control systems with random time delay

    Get PDF
    In this paper the continuous time stochastic constrained optimal control problem is formulated for the class of networked control systems assuming that time delays follow a discrete-time, finite Markov chain . Polytopic overapproximations of the system's trajectories are employed to produce a polyhedral inner approximation of the non-convex constraint set resulting from imposing the constraints in continuous time. The problem is cast in a Markov jump linear systems (MJLS) framework and a stochastic MPC controller is calculated explicitly, oine, coupling dynamic programming with parametric piecewise quadratic (PWQ) optimization. The calculated control law leads to stochastic stability of the closed loop system, in the mean square sense and respects the state and input constraints in continuous time

    Robust Stability Analysis of Nonlinear Hybrid Systems

    Get PDF
    We present a methodology for robust stability analysis of nonlinear hybrid systems, through the algorithmic construction of polynomial and piecewise polynomial Lyapunov-like functions using convex optimization and in particular the sum of squares decomposition of multivariate polynomials. Several improvements compared to previous approaches are discussed, such as treating in a unified way polynomial switching surfaces and robust stability analysis for nonlinear hybrid systems

    Algorithmic options for joint time-frequency analysis in structural dynamics applications

    Get PDF
    The purpose of this paper is to present recent research efforts by the authors supporting the superiority of joint time-frequency analysis over the traditional Fourier transform in the study of non-stationary signals commonly encountered in the fields of earthquake engineering, and structural dynamics. In this respect, three distinct signal processing techniques appropriate for the representation of signals in the time-frequency plane are considered. Namely, the harmonic wavelet transform, the adaptive chirplet decomposition, and the empirical mode decomposition, are utilized to analyze certain seismic accelerograms, and structural response records. Numerical examples associated with the inelastic dynamic response of a seismically-excited 3-story benchmark steel-frame building are included to show how the mean-instantaneous-frequency, as derived by the aforementioned techniques, can be used as an indicator of global structural damage

    Lagrangian and spectral analysis of the forced flow past a circular cylinder using pulsed tangential jets

    Get PDF
    We numerically investigate the influence of pulsed tangential jets on the flow past a circular cylinder. To this end a spectral-Lagrangian dual approach is completed on the basis of time-series data. The analysis reveals that the flow response to unsteady for- cing is driven by strong interactions between shear layers and pulsed jets. The latter preferentially lead to either the lock-on regime or the quasi-steady vortex feeding regime whether the excitation frequency is of the order of, or significantly greater than the fre- quency of the natural instability. The intensity of the wake vortices is mainly influenced by the momentum coefficient through the introduction of opposite-sign vorticity in the shear layers. This feature is emphasized using a modal-based time reconstruction, i.e. by reconstructing the flow field upon a specific harmonic spectrum associated with a charac- teristic time-scale. The quasi-steady regime exhibits small-scale counter-rotating vortices that circumscribe the separated region. In the lock-on regime, atypical wake patterns as 2P or P+S can be observed, depending on the forcing frequency and the momentum coefficient, highlighting remarkable analogies with oscillating cylinders
    corecore