1,757 research outputs found

    Interactive System-wise Anomaly Detection

    Full text link
    Anomaly detection, where data instances are discovered containing feature patterns different from the majority, plays a fundamental role in various applications. However, it is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data. Appropriate interactions are needed to interact with the systems and identify those with abnormal responses. Detecting system-wise anomalies is a challenging task due to several reasons including: how to formally define the system-wise anomaly detection problem; how to find the effective activation signal for interacting with systems to progressively collect the data and learn the detector; how to guarantee stable training in such a non-stationary scenario with real-time interactions? To address the challenges, we propose InterSAD (Interactive System-wise Anomaly Detection). Specifically, first, we adopt Markov decision process to model the interactive systems, and define anomalous systems as anomalous transition and anomalous reward systems. Then, we develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings, and a policy network to generate effective activation for separating embeddings of normal and anomaly systems. Finally, we design a training method to stabilize the learning process, which includes a replay buffer to store historical interaction data and allow them to be re-sampled. Experiments on two benchmark environments, including identifying the anomalous robotic systems and detecting user data poisoning in recommendation models, demonstrate the superiority of InterSAD compared with state-of-the-art baselines methods

    HealthXAI: Collaborative and explainable AI for supporting early diagnosis of cognitive decline

    Get PDF
    Our aging society claims for innovative tools to early detect symptoms of cognitive decline. Several research efforts are being made to exploit sensorized smart-homes and artificial intelligence (AI) methods to detect a decline of the cognitive functions of the elderly in order to promptly alert practitioners. Even though those tools may provide accurate predictions, they currently provide limited support to clinicians in making a diagnosis. Indeed, most AI systems do not provide any explanation of the reason why a given prediction was computed. Other systems are based on a set of rules that are easy to interpret by a human. However, those rule-based systems can cope with a limited number of abnormal situations, and are not flexible enough to adapt to different users and contextual situations. In this paper, we tackle this challenging problem by proposing a flexible AI system to recognize early symptoms of cognitive decline in smart-homes, which is able to explain the reason of predictions at a fine-grained level. Our method relies on well known clinical indicators that consider subtle and overt behavioral anomalies, as well as spatial disorientation and wandering behaviors. In order to adapt to different individuals and situations, anomalies are recognized using a collaborative approach. We experimented our approach with a large set of real world subjects, including people with MCI and people with dementia. We also implemented a dashboard to allow clinicians to inspect anomalies together with the explanations of predictions. Results show that our system's predictions are significantly correlated to the person's actual diagnosis. Moreover, a preliminary user study with clinicians suggests that the explanation capabilities of our system are useful to improve the task performance and to increase trust. To the best of our knowledge, this is the first work that explores data-driven explainable AI for supporting the diagnosis of cognitive decline

    Exploring techniques for vision based human activity recognition: Methods, systems, and evaluation

    Get PDF
    With the wide applications of vision based intelligent systems, image and video analysis technologies have attracted the attention of researchers in the computer vision field. In image and video analysis, human activity recognition is an important research direction. By interpreting and understanding human activity, we can recognize and predict the occurrence of crimes and help the police or other agencies react immediately. In the past, a large number of papers have been published on human activity recognition in video and image sequences. In this paper, we provide a comprehensive survey of the recent development of the techniques, including methods, systems, and quantitative evaluation towards the performance of human activity recognitio

    Survey on video anomaly detection in dynamic scenes with moving cameras

    Full text link
    The increasing popularity of compact and inexpensive cameras, e.g.~dash cameras, body cameras, and cameras equipped on robots, has sparked a growing interest in detecting anomalies within dynamic scenes recorded by moving cameras. However, existing reviews primarily concentrate on Video Anomaly Detection (VAD) methods assuming static cameras. The VAD literature with moving cameras remains fragmented, lacking comprehensive reviews to date. To address this gap, we endeavor to present the first comprehensive survey on Moving Camera Video Anomaly Detection (MC-VAD). We delve into the research papers related to MC-VAD, critically assessing their limitations and highlighting associated challenges. Our exploration encompasses three application domains: security, urban transportation, and marine environments, which in turn cover six specific tasks. We compile an extensive list of 25 publicly-available datasets spanning four distinct environments: underwater, water surface, ground, and aerial. We summarize the types of anomalies these datasets correspond to or contain, and present five main categories of approaches for detecting such anomalies. Lastly, we identify future research directions and discuss novel contributions that could advance the field of MC-VAD. With this survey, we aim to offer a valuable reference for researchers and practitioners striving to develop and advance state-of-the-art MC-VAD methods.Comment: Under revie
    • …
    corecore