1,071 research outputs found

    Disruption analytics in urban metro systems with large-scale automated data

    Get PDF
    Urban metro systems are frequently affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. Such disruptions give rise to delays, congestion and inconvenience for public transport users, which in turn, lead to a wider range of negative impacts on the social economy and wellbeing. This PhD thesis aims to improve our understanding of disruption impacts and improve the ability of metro operators to detect and manage disruptions by using large-scale automated data. The crucial precondition of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. In pursuit of this goal, the thesis develops statistical models to detect disruptions via deviations in trains’ headways relative to their regular services. Our method is a unique contribution in the sense that it is based on automated vehicle location data (data-driven) and the probabilistic framework is effective to detect any type of service interruptions, including minor delays that last just a few minutes. As an important research outcome, the thesis delivers novel analyses of the propagation progress of disruptions along metro lines, thus enabling us to distinguish primary and secondary disruptions as well as recovery interventions performed by operators. The other part of the thesis provides new insights for quantifying disruption impacts and measuring metro vulnerability. One of our key messages is that in metro systems there are factors influencing both the occurrence of disruptions and their outcomes. With such confounding factors, we show that causal inference is a powerful tool to estimate unbiased impacts on passenger demand and journey time, which is also capable of quantifying the spatial-temporal propagation of disruption impacts within metro networks. The causal inference approaches are applied to empirical studies based on the Hong Kong Mass Transit Railway (MTR). Our conclusions can assist researchers and practitioners in two applications: (i) the evaluation of metro performance such as service reliability, system vulnerability and resilience, and (ii) the management of future disruptions.Open Acces

    Study on the Impact of Health Condition Registration and Temperature Check on Inbound Passenger Flow and Optimisation Measures in a Metro Station during the COVID-19 Pandemic

    Get PDF
    The Guangzhou Metro Authority implemented health condition registration and temperature checks to curb the spread of the virus during the COVID-19 pandemic. However, it is important to investigate how these measures may have impacted the get-through efficiency and whether they caused the increased crowding at entrances and the station hall. To address these questions, simulation models based on the T Station were developed using AnyLogic. The model compared the get-through efficiencies with and without the anti-epidemic measures, while also analysing the risk of crowding at entrances and within the station hall after their implementation. Results revealed an increase in the number of passengers unsuccessfully passing through the check-in gate machines from 15% to 53% within 5 minutes, and 10% to 45% within 10 minutes when the anti-epidemic measures were in place. It was also observed that some entrances experienced significant crowding. Three measures were simulated to find effective ways to increase the get-through efficiency and mitigate the crowding – increasing the distance between security and health checks, utilising automatic infrared thermometers, and arranging volunteers or staff to assist with the registration process. The results demonstrated that using automatic infrared thermometers instead of handheld forehead thermometers proved to be effective in improving passenger efficiency and alleviating crowding at entrances and within the station hall

    Detecting metro service disruptions via large-scale vehicle location data

    Get PDF
    Urban metro systems are often affected by disruptions such as infrastructure malfunctions, rolling stock breakdowns and accidents. The crucial prerequisite of any disruption analytics is to have accurate information about the location, occurrence time, duration and propagation of disruptions. To pursue this goal, we detect the abnormal deviations in trains’ headway relative to their regular services by using Gaussian mixture models. Our method is a unique contribution in the sense that it proposes a novel, probabilistic, unsupervised clustering framework and it can effectively detect any type of service interruptions, including minor delays of just a few minutes. In contrast to traditional manual inspections and other detection methods based on social media data or smart card data, which suffer from human errors, limited monitoring coverage, and potential bias, our approach uses information on train trajectories derived from automated vehicle location (train movement) data. As an important research output, this paper delivers innovative analyses of the propagation progress of disruptions along metro lines, which enables us to distinguish primary and secondary disruptions as well as effective recovery interventions performed by operators

    Utilizing an Adaptive Neuro-Fuzzy Inference System (ANFIS) for overcrowding level risk assessment in railway stations

    Get PDF
    The railway network plays a significant role (both economically and socially) in assisting the reduction of urban traffic congestion. It also accelerates the decarbonization in cities, societies and built environments. To ensure the safe and secure operation of stations and capture the real-time risk status, it is imperative to consider a dynamic and smart method for managing risk factors in stations. In this research, a framework to develop an intelligent system for managing risk is suggested. The adaptive neuro-fuzzy inference system (ANFIS) is proposed as a powerful, intelligently selected model to improve risk management and manage uncertainties in risk variables. The objective of this study is twofold. First, we review current methods applied to predict the risk level in the flow. Second, we develop smart risk assessment and management measures (or indicators) to improve our understanding of the safety of railway stations in real-time. Two parameters are selected as input for the risk level relating to overcrowding: the transfer efficiency and retention rate of the platform. This study is the world’s first to establish the hybrid artificial intelligence (AI) model, which has the potency to manage risk uncertainties and learns through artificial neural networks (ANNs) by integrated training processes. The prediction result shows very high accuracy in predicting the risk level performance, and proves the AI model capabilities to learn, to make predictions, and to capture risk level values in real time. Such risk information is extremely critical for decision making processes in managing safety and risks, especially when uncertain disruptions incur (e.g., COVID-19, disasters, etc.). The novel insights stemmed from this study will lead to more effective and efficient risk management for single and clustered railway station facilities towards safer, smarter, and more resilient transportation systems

    Intelligent Transportation Related Complex Systems and Sensors

    Get PDF
    Building around innovative services related to different modes of transport and traffic management, intelligent transport systems (ITS) are being widely adopted worldwide to improve the efficiency and safety of the transportation system. They enable users to be better informed and make safer, more coordinated, and smarter decisions on the use of transport networks. Current ITSs are complex systems, made up of several components/sub-systems characterized by time-dependent interactions among themselves. Some examples of these transportation-related complex systems include: road traffic sensors, autonomous/automated cars, smart cities, smart sensors, virtual sensors, traffic control systems, smart roads, logistics systems, smart mobility systems, and many others that are emerging from niche areas. The efficient operation of these complex systems requires: i) efficient solutions to the issues of sensors/actuators used to capture and control the physical parameters of these systems, as well as the quality of data collected from these systems; ii) tackling complexities using simulations and analytical modelling techniques; and iii) applying optimization techniques to improve the performance of these systems. It includes twenty-four papers, which cover scientific concepts, frameworks, architectures and various other ideas on analytics, trends and applications of transportation-related data
    • …
    corecore