12,483 research outputs found

    Reliable data delivery in low energy ad hoc sensor networks

    Get PDF
    Reliable delivery of data is a classical design goal for reliability-oriented collection routing protocols for ad hoc wireless sensor networks (WSNs). Guaranteed packet delivery performance can be ensured by careful selection of error free links, quick recovery from packet losses, and avoidance of overloaded relay sensor nodes. Due to limited resources of individual senor nodes, there is usually a trade-off between energy spending for packets transmissions and the appropriate level of reliability. Since link failures and packet losses are unavoidable, sensor networks may tolerate a certain level of reliability without significantly affecting packets delivery performance and data aggregation accuracy in favor of efficient energy consumption. However a certain degree of reliability is needed, especially when hop count increases between source sensor nodes and the base station as a single lost packet may result in loss of a large amount of aggregated data along longer hops. An effective solution is to jointly make a trade-off between energy, reliability, cost, and agility while improving packet delivery, maintaining low packet error ratio, minimizing unnecessary packets transmissions, and adaptively reducing control traffic in favor of high success reception ratios of representative data packets. Based on this approach, the proposed routing protocol can achieve moderate energy consumption and high packet delivery ratio even with high link failure rates. The proposed routing protocol was experimentally investigated on a testbed of Crossbow's TelosB motes and proven to be more robust and energy efficient than the current implementation of TinyOS2.x MultihopLQI

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) for Non-smooth Data Field

    Full text link
    Compressive Sensing (CS) has been applied successfully in a wide variety of applications in recent years, including photography, shortwave infrared cameras, optical system research, facial recognition, MRI, etc. In wireless sensor networks (WSNs), significant research work has been pursued to investigate the use of CS to reduce the amount of data communicated, particularly in data aggregation applications and thereby improving energy efficiency. However, most of the previous work in WSN has used CS under the assumption that data field is smooth with negligible white Gaussian noise. In these schemes signal sparsity is estimated globally based on the entire data field, which is then used to determine the CS parameters. In more realistic scenarios, where data field may have regional fluctuations or it is piecewise smooth, existing CS based data aggregation schemes yield poor compression efficiency. In order to take full advantage of CS in WSNs, we propose an Adaptive Hierarchical Data Aggregation using Compressive Sensing (A-HDACS) scheme. The proposed schemes dynamically chooses sparsity values based on signal variations in local regions. We prove that A-HDACS enables more sensor nodes to employ CS compared to the schemes that do not adapt to the changing field. The simulation results also demonstrate the improvement in energy efficiency as well as accurate signal recovery
    • …
    corecore